
Design for an Increasingly Protean
Machine

A Dissertation Presented

by

Sam Kriegman

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Specializing in Computer Science

October, 2020

Defense Date: September 4th, 2020
Dissertation Examination Committee:

Josh Bongard, Ph.D., Advisor
Peter Spector, M.D., Chairperson

Nick Cheney, Ph.D.
Laurent Hébert-Dufresne, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of Graduate College

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28150239

28150239

2020

Abstract

Data-driven, rather than hypothesis-driven, approaches to robot design are becoming
increasingly widespread, but they remain narrowly focused on tuning the parameters
of control software (neural network synaptic weights) inside an overwhelmingly static
and presupposed body. Meanwhile, an efflorescence of new actuators and metamate-
rials continue to broaden the ways in which machines are free to move and morph, but
they have yet to be adopted by useful robots because the design and control of meta-
morphosing body plans is extremely non-intuitive. This thesis unites these converging
yet previously segregated technologies by automating the design of robots with phys-
ically malleable hardware, which we will refer to as protean machines, named after
Proteus of Greek mythology.

This thesis begins by proposing an ontology of embodied agents, their physical
features, and their potential ability to purposefully change each one in space and
time. A series of experiments are then documented in which increasingly more of
these features (structure, shape, and material properties) were allowed to vary across
increasingly more timescales (evolution, development, and physiology), and collec-
tively optimized to facilitate adaptive behavior in a simulated physical environment.
The utility of increasingly protean machines is demonstrated by a concomitant in-
crease in both the performance and robustness of the final, optimized system. This
holds true even if its ability to change is temporarily removed by fabricating the sys-
tem in reality, or by “canalization”: the tendency for plasticity to be supplanted by
good static traits (an inductive bias) for the current environment. Further, if physical
flexibility is retained rather than canalized, it is shown how protean machines can,
under certain conditions, achieve a form of hyper-robustness: the ability to self-edit
their own anatomy to “undo” large deviations from the environments in which their
control policy was originally optimized.

Some of the designs that evolved in simulation were manufactured in reality using
hundreds of highly deformable silicone building blocks, yielding shapeshifting robots.
Others were built entirely out of biological tissues, derived from pluripotent Xenopus
laevis stem cells, yielding computer-designed organisms (dubbed “xenobots”). Over-
all, the results shed unique light on questions about the evolution of development,
simulation-to-reality transfer of physical artifacts, and the capacity for bioengineering
new organisms with useful functions.

Citations

Material from this dissertation has been published in the following form:

Kriegman, S. et al.. (2017). A minimal developmental model can increase evolv-
ability in soft robots. In Proceedings of the Genetic and Evolutionary Computation
Conference.

Kriegman, S. et al.. (2018). How morphological development can guide evolution.
Scientific Reports 8 (1), 1–10.

Kriegman, S. et al.. (2018). Interoceptive robustness through environment-mediated
morphological development. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference.

Kriegman, S. et al.. (2019). Automated shapeshifting for function recovery in dam-
aged robots. In Proceedings of Robotics: Science and Systems.

Kriegman, S.. (2020). Why virtual creatures matter. Nature Machine Intelligence 1
(10) 492.

Kriegman, S. et al.. (2020). Scalable sim-to-real transfer of soft robot designs. In
Proceedings of the IEEE International Conference on Soft Robotics.

Kriegman, S. et al.. (2020). A scalable pipeline for designing reconfigurable organisms.
Proceedings of the National Academy of Sciences 117 (4) 1853–1859.

ii

Table of Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Contributions . 2
1.3 Ontology . 4
1.4 Evolved Robots: The Fossil Record 9
1.5 Evolutionary Algorithms . 10
1.6 The March of Progress . 11
1.7 The Evolvability of Robots . 11
1.8 The Evolution of Development . 13
1.9 Evolved Development in Robots . 16
1.10 Resilient Machines . 17
1.11 A Protean Machine? . 19
1.12 Increasingly Protean Machines . 23
1.13 Overview of the Thesis . 25

2 Structure 27
2.1 Introduction . 27
2.2 Methods . 30
2.3 Results . 34
2.4 Discussion . 38

3 Shape 41
3.1 Introduction . 41
3.2 Methods . 44
3.3 Results . 49
3.4 Conclusion . 56

4 Shape and Configuration 57
4.1 Introduction . 57
4.2 Results . 61
4.3 Discussion . 69
4.4 Methods . 71
4.5 Supplementary Discussion . 73
4.6 Supplementary Methods . 74

iii

5 Material, Structure, Configuration 83
5.1 Introduction . 84
5.2 Methods . 86
5.3 Results . 89
5.4 Discussion . 97

6 Structure, Shape, Configuration 99
6.1 Introduction . 100
6.2 Methods . 101
6.3 Results . 107
6.4 Discussion . 114

7 Living Protean Machines 117
7.1 Introduction . 118
7.2 Results . 119
7.3 Discussion . 125
7.4 Materials and Methods . 127
7.5 Supplementary Methods . 130

8 Argument 169
8.1 Précis of the Thesis . 169
8.2 Sim-to-Real for Structure . 172

8.2.1 Contribution . 173
8.3 Ballistic Development . 173

8.3.1 Contribution . 174
8.4 Differential Canalization . 174

8.4.1 Contribution . 175
8.5 Environment-Mediated Development 176

8.5.1 Contribution . 177
8.6 Shapeshifting for Damage Recovery 177

8.6.1 Contribution . 178
8.7 Computer-Designed Organisms . 178

8.7.1 Contribution . 179
8.7.2 Future Work . 180

8.8 Conclusion . 181

iv

Chapter 1

Introduction

1.1 The Problem

The soles of our boots wear thin, but the soles of feet grow thick,
the more we walk upon them.

—D’Arcy Thompson (1917)

This thesis has as its basis the fact that organisms are at once autonomous and
adaptive systems, and robots are not.

By far the most commercially successful autonomous robot to date is the self-
driving vacuum: the Roomba. Roombas are autonomous but non-adaptive systems.
Mine is routinely defeated by the same long shoelace, which it eats and coils around
its spinning brush and wheels until they grind to a halt. An adaptive robot would
sense that something had gone awry, and respond by altering its behavior so as to
preserve its functionality. That is, an adaptive robot would change so as to remain
the same.

Autonomous adaptive machines could provide immense social utility. They could
be used to patrol, remediate, and protect our bodies and our planet. They could help
us build new infrastructure, here on Earth and in space, and technological artifacts far
beyond the size scales we have achieved thus far. If successful, an increasingly dense,
rich, and empowering web of human-robot interaction would be realized. Robots
would no longer simply serve as workers or mere extensions of the human mind, like
most other technologies. They would become our peers. However, this vision will
only be possible if our robot symbionts are both autonomous and adaptive, like every
organism on Earth.

One could argue that the essential difference between organisms and current robots
is that organisms are protean systems: Organisms, like Proteus [184], are constantly
forming and reforming. All conventional robots to date, on the other hand, are
deployed with a fixed morphology which does not change during operation.

1

1.2 Contributions

Proteus will seek to foil you by taking the shape of every creature
that moves on earth, and of water and of portentous fire; but you
must hold him unflinchingly and you must press the harder.

—Homer (C8th B.C.)

In the pages that follow, I will demonstrate the utility of increasingly protean ma-
chines through a series of evolutionary robotics experiments that were performed
over the course of four years, during my time as a Ph.D. student at the University of
Vermont (2016-2020). Seven key benefits were uncovered and scrutinized:

1. Protean body plans permit continual learning [233] and open-ended evolution
[148] in machines with open-loop or static control systems. This is possible
because of hardware revisions, persisting over extended periods of time, that
cause the same sequence of actions to generate different behaviors (chapters 2,
3, 6 and 7).

2. Protean body plans introduce arbitrarily small, and thus arbitrarily safe mu-
tations [131], whose behavioral impact manifests temporarily during operation,
rather than permanently from deployment (chapter 3). Evolution can then
lengthen the time intervals containing superior traits and reduce the intervals
of inferior traits. This allows evolution to surgically revise morphology with a
pair of tweezers, if you will, rather than a sledgehammer.

3. Protean body plans smooth the search space evolution operates in via the Bald-
win effect (chapters 3 and 4). This effect is outlined in section 1.8. In brief, the
flexibility of a protean feature (e.g. skin thickness) allows evolution to sweep
through design space along a line of development rather than sampling a single
point of a morphologically-static agent. Development can then be incrementally
canalized about a good static trait (e.g. calluses). This gradual homing-in pro-
cess is hastened by natural selection, and eventually supplanted by the genetic
determination of the feature (e.g. embryonic calluses). This well-studied phe-
nomenon in artificial neural networks [96] is revisited with a twist: physically
embodied robots, rather than an abstract control system. This distinction is
important because it grounds hypotheses in the constraints and opportunities
afforded by the physical world.

4. Protean body plans promote (the canalization of) permissive body plans: bodies
that are robust to control changes (chapter 4). It is much easier to train a

2

control policy within a permissive body. This exposed a previously unknown
detail about the Baldwin effect: instead of all useful traits becoming genetically
assimilated, only traits that render the agent robust to changes in other traits
become assimilated. I refer to this as differential canalization.

5. Protean body plans foster “zero-shot” generalization [220] (on the very first try,
without adjustment) to previously-unseen static morphologies (chapter 5). The
amount of generalization was found to depend on the kinds of interoceptive
signals used to guide their morphological change during optimization.

6. Protean body plans amplify robustness to damage (chapter 6). This is because
a sufficiently deformable body can in some cases morph to “resonate” with an
existing control policy—tuned prior to damage—to regenerate behavioral com-
petence. In some cases a shapeshifting robot can deform its remnant structure
to regenerate (more or less) the original body shape. However that is not al-
ways possible or optimal given the remnant material and degrees of freedom. A
shapeshifting robot can also form entirely novel shapes to recover function under
a static control policy. This allows protean machines to recover functionality
after “deep insult”, such as removal of all limbs, or being cut in half.

7. Protean body plans can, in some cases, cohere the unpredictable behavior of
biological building blocks (such as cardiomyocytes) into more predictable whole-
body behavior (chapter 7). Evolution in silico can yield an appropriate static
morphology that denoises and stabilizes even completely random control poli-
cies. Under certain constraints, such robust designs can be built from biological
building blocks. This in effect can yield new organisms that are by virtue of
their living cells inherently protean.

In addition to these seven intellectual contributions, two new platforms for construct-
ing physical protean machines were developed as part of this thesis:

1. Voxcraft. A modular soft robot design and construction kit (used in chapters 2
and 6), voxcraft is open-source, safe, inexpensive, and simple. The design soft-
ware is essentially a GPU-accelerated re-implementation of Voxcad [95], with
a more salable tree-based collision system. The build protocol involves 1-axis
rotational drip-molding, which was inspired by a 2-axis rotational molding tech-
nique [255]. The goal of voxcraft is threefold: Lower the barrier of entry to soft
robotics for non-experts, facilitate new research in evolutionary robotics, and
simplify the replication of those studies. More information can be found at:
voxcraft.github.io

3

https://voxcraft.github.io/

2. Reconfigurable Organisms. Chapter 7 reprises the 2020 study that introduced
the first computer-designed organisms: xenobots. AI methods automatically
design diverse candidate lifeforms in silico to perform some desired function,
and transferable designs are then created using a cell-based construction toolkit
to realize living systems with the predicted behaviors. More information can
be found at: cdorgs.github.io

1.3 Ontology

A “system” is a set of variables sufficiently isolated to stay dis-
cassable while we discuss it.

—W. Ross Ashby

In the chapters that follow, we will incrementally liberate different physical attributes
of a robot’s design from the assumption that they are hand designed and fixed, so that
they may vary during operation. This section defines each such variable, how they
relate to each other (Fig. 1.1), as well as the different time scales in which they may
change. The definitions are necessarily fuzzy around the edges, idealized, stipulative,
and include (at least) one category mistake—but they will be precise enough to be
useful. Later, when more exact concepts have been developed (e.g. how physics is
simulated), it will be possible to state the ontology more precisely.

1. Time. It will be convenient to define {T ∈ N |T > 0} for evolutionary (phy-
logenetic) time, and {t ∈ R | t > 0} for developmental (ontogentic) time. Time
is strictly positive, with t nested inside of T . Nested inside of t is another
timescale—that of physiological functioning (e.g. the beating of a heart) and
behavior (e.g. the cycle of a gait): “here and now” as Pfeifer and Bongard
[187] put it. Time is of course relative to an observer—and there are nested
observers. Here-and-now is minutes for a squirrel burying acorns, seconds for
a dog chasing the squirrel, milliseconds for a racing heart, microseconds for its
gated ion channels, pico- or femtoseconds for its vibrating molecular bonds. We
can denote these finer timescales θ1, θ2, . . . but that will not be strictly necessary
for the purposes of this thesis.
T and t are sufficient to describe a basic synchronous evolutionary algorithm
in time. For the entire n-th generation of evolution, T = n as a population of
designs (robot phenotypes) develop and behave for τ seconds during ontogeny:
an evaluation period over t ∈ (0, τ). The worst designs are culled and replaced

4

https://cdorgs.github.io/

Environment

Material

Building blocks

Structure

Shape

Configuration

Figure 1.1: Taxonomy of a robot’s state. The
environment is a source of innumerable variables
that can affect the robot. Within the environment
there are materials from which building blocks
may be fashioned. Building blocks of material are
connected together to form a structure. A given
structure can be deformed into various resting
shapes. Configurations deflect the robot’s struc-
ture about a resting shape, with elastic strain en-
ergy proportional to the deflection.

M

S

𝚷 𝚷′control
policy

sensors

motors

out of
control

Figure 1.2: Functional decomposition of state.
A set of sensors S are input to a policy Π which
controls a set of motors M. Motors influence
the environment Π′, sensors record the repercus-
sions of actions. Traditionally, a robot’s structure,
shape and material properties are not varied by
Π: they are “out of control”. They are, from the
perspective of Π, part of the environment. This
Cartesian body/policy dissection is ubiquitous in
AI, and sometimes useful for predicting behavior.

by noisy copies of the survivors. T is incremented by one, t starts over at 0,
and generation n+ 1 begins.
Note that this neat organization of timescales will later be turned inside out
when designs are evolved without development in silico, and then built as or-
ganisms that develop but do not evolve and cannot reproduce in vivo.

2. Material. Embodied systems are made out of physical matter with mechani-
cal properties—mass, density, friction, stickiness, viscosity, elasticity, plasticity,
stability, strengths and limits—which can either streamline or frustrate the evo-
lution of adaptive behavior [240]. Material properties can be heterogeneously
distributed across a robot’s body, and in some experiments, can change in both
evolutionary and developmental time.

3. Building block. The smallest constituent unit of material that constitutes a
robot. A block can be a passive slab of raw material, or it can itself be com-
posed of functional subcomponents, circuitry, sensors and motors—but these
sub-block-level elements cannot be manipulated by the designer or optimizer.
In most of the following chapters, the building blocks will be elastic voxels, be-
cause the simulator employed for most of this work is voxel-based. Voxels are
congruent cubes that attach face to face to form a structure, known formally as
a polycube. In computer-designed organsims, however, the building blocks are
biological cells: de/ciliated ectoderm and cardiomyocytes.

5

configuration 0 configuration 2configuration 1

st
ru

ct
ur

e
B

sh
ap

e
A

st
ru

ct
ur

e
A

sh
ap

e
A

st
ru

ct
ur

e
B

sh
ap

e
B

fast timescale (microseconds)

sl
ow

 ti
m

es
ca

le
 (

m
in

ut
es

 /
m

on
th

s
/ m

ill
en

ni
a)

Figure 1.3: Changes of geometry in time. By row, top to bottom: A 2-by-2 grid of building blocks is
generated (structure A). Each block has squarish resting shape (shape A) and identical material properties.
The material details—and how they might change over time—are not depicted. A change in structure
occurs when one of the blocks is subtracted from the body plan (structure B). Later, changes to the local
volume and curvature of each block deform the overall geometry (shape B) without adding, removing
or reorganizing the blocks (structure B). By column, left to right: The body at rest (configuration
0). When behaving, dorsal blocks are rapidly shifted back and forth, to the left (configuration 1) and to
the right (configuration 2). Active blocks are shaded in proportion to their relative displacement due to
configuration: lighter when angled to the left, and darker when angled to the right.

4. Structure. The contiguous topological arrangement and coupling of building
blocks. The space of possible structures that can be built out of a pile of voxels—
the set of polycubes—and the duplicates that result when these structures are
translated, rotated or reflected—are enumerable. This simplifying constraint
biases evolution toward regular, buildable structures and it makes it easier for
any humans in the loop to think about the design space.

5. Shape. Plastic deformations and folding of the building blocks of a given struc-
ture, which persist after stresses have been removed. Or, elastic deformations
that are held relatively constant under stress, within some interval of develop-
mental time, during a sequence of configurations (definition 6) (e.g. as the leg

6

moves from point to point). Shape change can adjust the robot’s posture, vol-
ume, mass distribution, number/placement of limbs, storage/release of elastic
strain energy, surface contact geometry and tribology, during behavior.

6. Configuration. The displacement, orientation, and elastic deformation of a
robot’s resting shape during ontogeny. When the robot relaxes, it returns to
its resting shape. For example, a spherical robot could deform to generate four
limbs (shape change) and then move those limbs back and forth to gallop across
flat terrain (configuration change). Later, the robot could extrude five clawed
fingers at the end of each of its limbs. By moving its limbs and fingers and torso
in a different pattern, it climbs a tree, and swings from branch to branch. As
the robot travels through the different configurations of running or climbing or
swinging, its body will stretch and contort about its root shape.
For a protean machine that can intentionally change both shape and configu-
ration, the distinction between the two becomes somewhat arbitrary. Are they
not both simply “actuation”? This distinction is perhaps most secure in terms
of the time scales on which processes of shape change and configuration change
occur naturally. An amorphous blob could in principle continuously morph as
a form of locomotion, rendering its “configuration” and “shape” equivalent. In
nature, however, there is modularity: an underlying anatomical shape that is
developing yet persists as the organism behaves (Fig 1.3).

7. Environment. Variables whose changes affect the robot, and variables which
are changed by the robot’s actions. This definition, adopted from Ashby [7], is
intentionally broad, encompassing an infinitude of inanimate objects and forces,
properties of the surrounding medium, the terrain, as well as other robots and
living systems around and inside the robot.

8. State. A robot’s environment, configuration, shape, structure and material
properties, taken together, at any moment in ontogeny 0 < t < τ .

9. Controller. When thinking about robots, it is sometimes useful to define
“controller” as a separate entity—a “policy” [227] that steers the robot along
a “line of ontogeny”: a succession of states. This is particularly helpful when
dealing with electronics and software that is—for good reason—abstracted far
away from the details of transistors and ions and sensorimotor circuits. But we
must remind ourselves that this is, in fact, a categorical error [67, 90, 187].
Without invoking a Deus ex machina, a line of ontogeny can only be formed by
the robot’s state and the condition of its immediate surroundings. Decomposing
state into modules that on one hand “steer” and on the other “are steered”, is

7

an example of what Bennett et al. [20] call a mereological1 fallacy (e.g. “brains
predict” [47]). Thus “controller” is formally identical (isomorphic) to “state”
and redundant in our ontology. But it is nevertheless useful (Fig. 1.2).

10. Field. Borrowing yet another page from Ashby’s book, a “field” is defined
as “the phase-space containing all the lines of [ontogeny] found by releasing
the system from all possible initial states in a particular set of surrounding
conditions.” We can now see “behaviors” as attractor states in the field of a
robot arising from interactions among configuration, shape, structure, material
properties, controller and environment.
When different variables of a robot change on different timescales, slower moving
variables define a subfield through which lines of faster moving variables may
unfold. If a set of variables is fixed, the lines of ontogeny run in a subspace
orthogonal to the axes (Fig. 1.4). Thus, the robot’s current structure, material
properties and resting shape define which configurations are available to the
robot, and which are out of reach.
Reconsider the example of limb growth in an initially spherical robot. The field
surrounding an actuated sphere turns almost all lines of configuration change
into rolling behavior. However, by stretching a few physical attributes past a
critical point, the robot finds itself in a new field (Fig. 1.5), capable of previously
unreachable behaviors (walking, climbing, brachiation).

Figure 1.4: Ashby [7] illustrated how inactive
variables restrict the active ones to an orthogo-
nal subspace: “In the different stages the active
variables are: A, y; B, y and z; C, z; D x; E y;
F x and z.” Variables can be practically inactive
in relation to those that change on a much faster
time scale.

Figure 1.5: In describing variables due to step-
mechanisms (S), Ashby [7] made clear how a sys-
tem could be pushed onto new fields through crit-
ical states (from C to C). Morphological change
(e.g. growing new effectors) can likewise drive
a fixed sequence of actuation through disparate
fields of configurations and novel behaviors.

1From the Greek µέρoς meros: “a part, a fraction”.

8

Figure 1.6: Lipsonian AI. An evolved simulated robot (left) and its 3D printed equivalent (right) [140].

1.4 Evolved Robots: The Fossil Record
In 1994, under the aegis of the Thinking Machines Corporation and the MIT Media
Lab, the very first evolved yet virtual robots were reported by Sims [214, 215] and
Ventrella [242]: structure and control of autonomous agents were co-optimized so that
they ran, jumped, swam, performed phototaxis, and fought head-to-head for resources
in a virtual world that followed (more or less) the laws of classical mechanics. The
robots were relatively simple, composed of just a handful of jointed, rigid components,
but their behavior was surprisingly rich and lifelike.

These experiments started with an objective, such as locomotion, and a population
of randomly assembled robots. Although it was unlikely that any randomly assembled
robot would fully satisfy the objective, by replacing the worst-performing designs
with slightly- and randomly modified copies of the better ones, the population made
incremental progress, generation by generation. It was the survival of the fittest, or,
in the case of locomotion, the fastest.

Six years later, at Brandeis University, Lipson and Pollack [140] transferred simi-
larly evolved robots from simulation to reality (Fig. 1.6) with a technology just then
emerging: 3D printing. Robot designs were rapidly and safely prototyped as virtual
creatures, discarding the truly awful or dangerous designs before testing them in re-
ality. The result were “robotic lifeforms” that were designed, optimized, and built,
end-to-end, with almost no human intervention.

Although Sims, Ventrella, Lipson and Pollack, and many, many others [9–11,
26, 27, 30, 33, 38, 40, 42–44, 46, 94, 98, 100, 114, 115, 130, 132, 133, 137, 182,
193, 197, 211, 240, 243] used an Evolutionary Algorithm (EA) to design simulated
and/or physical robots, evolutionary robotics is independent of the specific procedure
used to automatically generate and test designs.2 EAs happen to be particularly

2Evolutionary robotics can be evolutionary robotics without an Evolutionary Algorithm because

9

useful in this domain because, apart from being exceedingly simple and parallelizable
(Algorithm 1), few assumptions must be made about the robot a priori. The robot’s
material properties, building blocks, structure, shape, configuration, and controller
can all be optimized together. For 25 years, structural optimization proper—changing
the number and placement of mechanical degrees of freedom (building blocks), not
merely tuning the parameters of a predefined structure—had only been achieved
through evolutionary design.

1.5 Evolutionary Algorithms
Evolutionary Algorithms [48, 78, 79, 91, 172] differ from “gradient-based” approaches
to optimization in two important respects. First, EAs require a population of agents
(candidate designs) spread out on the fitness landscape,3 whereas learning occurs
within a single agent. Second, individuals in an evolving population are modified
through random mutation, without any anticipated benefit. Gradient-based learning
algorithms, in contrast, predict the repercussions of design revisions before applying
them; they estimate the local topography (the gradients) of the fitness landscape
around the current design, so that revisions can be applied that are expected to
improve the design (climb the gradient). Evolution has no such foresight.

Algorithm 1: Evolution.
1: P ← CreateRandomPopulation()
2: while not TerminationCondition() do
3: EvaluatePopulation(P) . n individuals evaluated at once on n threads
4: S ← SelectParents(P)
5: P ← RecombineAndMutate(S) . appends or replaces S with mutants
6: end while
7: return GetFittestIndividual(P)

any design process inevitability involves an evolutionary process of generate-and-test [61] on one
spatiotemporal scale or another. Pathak et al. [180] used an algorithm inspired by Skinnerian
development rather than Darwinian evolution to automate robot design—and did not refer to their
work as evolutionary robotics. But as Fields and Levin [75] note, “the evolution of life on earth can
also be seen as the development of life on earth. . . [as] all descendants of [the last universal common
ancestor] together compose one continuous cell lineage, that is, one biological individual.”

3A “fitness landscape” is a metaphorical terrain used to conceptualize multidimensional design
space in terms of more familiar notions of 2D or 3D topographical space. Design variants are mapped
to coordinates on the horizontal axis (Fig. 1.8) or plane (Fig. 1.9). The elevation of this landscape
is fitness (higher is better). Unlike a phase-space or field, which describes the tendency of state
transitions in ontogeny, a fitness landscape describes changes in fitness due to changes in design.
There is no guarantee that mutations exist to move a design up a slope of fitness.

10

1.6 The March of Progress
In 2019, Pathak et al. [180] demonstrated how a robot’s ontogenetic structure and
configuration can be co-optimized using a gradient-based reinforcement learning (RL)
algorithm, without evolution. Instead of evolving a monolithic morphology, Pathak
et al. optimized a swarm of elemental agents—autonomous “limbs”—that, in addition
to actuating, could choose at every timestep to either attach to their nearest neighbor
(forming an aggregate, symbiotic machine with a shared reward function) or detach,
reconfigure, and test a new design.4 Thus structure was controlled by the same policy
that coordinated configuration changes.

Despite not using a certified Evolutionary Algorithm, this too is evolutionary
robotics. Indeed, the line between RL and EAs is becoming so thin, the two are
almost indistinguishable. There are EAs that act more like a single agent learning
than a population evolving [201]. And with the rise of massively parallel computer
architectures, increasing interest in RL is coming to bear on population-based meth-
ods that can fill up those parallel threads with multiple learners [106]. What’s clear is
that Pathak’s virtual robots evolved in the general sense (if not the stricter Darwinian
interpretation) of the word “evolution”. If we compared the structures assembled by
randomly generated limbs to those assembled by fully trained limbs, and sampled
some results along the way, we would get something like Rudolph Zallinger’s iconic
“March of Progress” from Dryopithecus to Modern Man, that inevitable stock image
of evolution. There is no march of progress for non-evolved robots because the design
is held fixed during training.

However, there has not been much of a march of progress for evolved robots ei-
ther. Despite vast increases in computational power since 1994 and major advances
in additive manufacturing after 2000, evolutionary robotics has floundered in a sea of
Sims-like virtual creatures (Fig. 1.7) and Lipsonian machines (Fig. 1.6). In the two
decades after Lipson and Pollack [140], very few [33, 38, 70, 94, 99, 182] have endeav-
ored to evolve physical robots. Even in silico, free from most real world constraints,
scant progress has been made scaling the complexity and competence of virtual robots
[45] (Fig. 1.7).

1.7 The Evolvability of Robots
One reason that evolving robots has proven so challenging is the very fact that robots
are embodied and situated. Local structural revisions, such as adding a fifth rotor to
a functioning quadcopter, tend to have global behavioral repercussions. It is usually
difficult to find a series of small adjustments that result in increasingly better design.

4Simply put, attaching/detaching was in the “action space” of each limb [227].

11

1994: 2018:

Figure 1.7: The first evolved simulated robots (Sims, [215]), and the state of the art (Cheney et al.,
[46]).

This property makes physical artifacts much more difficult to optimize than disem-
bodied systems such as deep neural networks, which tend to preserve their behavior
in the face of sweeping global revisions.5

Certain aspects of robot behavior are generated by the precise orchestration of its
parts. When more parts are added from design revisions or subtracted from wear and
tear, the mapping from sensors to motors—the control policy (Π in Fig. 1.2)—could
be rendered more or less obsolete for the current task environment [27, 55].

Other aspects of behavior are generated by virtue of embodiment and the laws of
physics alone, such as rolling down a declined plane, and the swing phase of human
walking [50]. From the controller’s perspective, such behaviors, or aspects thereof,
are passive: the body and environment provide them “for free” (Π′ in Fig. 1.2).
The control system need not spend any of its valuable resources orchestrating this
behavior from scratch; instead, it may exploit these passive dynamics, gently guiding
them when necessary, to render useful work [240]. However, if control is predicated
on particular body-environment interactions occurring automatically, and the body
or environment change and disrupt this interplay, the controller will need to carefully
redistribute its computational resources to steer these additional interactions while
maintaining other aspects of behavior with less computational oversight.

5The most common method for training artificial neural nets is backpropagation of error, which
estimates the gradient with respect to each weight of the network. Iterating backward, one layer at
a time, error is propagated by chain-rule to upstream weights, which are adjusted in proportion to
their respective gradient. Depending on the size of the network, thousands or millions (or hundreds
of billions [191]) of parameters are all perturbed at once.

12

The behavioral consequences of physical mutations or damage are particularly
harsh when morphology is ontogenetically-static, because any change to behavior
manifests instantly and permanently from deployment or time of damage. It is usually
easier to achieve acceptable levels of fitness by holding the body plan fixed throughout
optimization and focusing solely on learning better controllers for the given body,
regardless of the body’s fitness potential [45]. Thus, much work has attempted to
reduce the behavioral repercussions of morphological mutations [46]. A natural way
to reduce the behavioral impact of a mutation is to spread that impact across a period
of time: development.

1.8 The Evolution of Development
In a population of evolving but non-developmental robots, mutations can only change
the physical layout by discrete steps, from parent to child. This is because the design
of a non-developmental robot cannot change during its lifetime. The morphological
and thus behavioral impacts of such mutations take hold immediately, at t = 0.
Introducing development allows mutations to manifest slowly during the lifetime of
a robot, or at the very end of the lifetime, which enables arbitrarily small design
modifications.

Of course there are other ways to reduce the behavioral impact of mutations. For
one, we could simply restrict the magnitude of morphological mutations to be vanish-
ingly small. This might very well be sufficient given enough time, and if the fitness
landscape is smooth enough to ensure that a sequence of tiny steps will progressively
increase fitness. However, the search space of possible robot designs tends not to
be smooth in realistic settings; rather than hills and gentle slopes, the landscape is
typically full of cliffs and harsh spikes.

Some great designs, we may suppose, are only of value when perfect or nearly so;
changing them by even a single bit is all but certain to entirely break their functional-
ity. In other words, there is no gradient—no sequence of mutations—leading toward
these great designs. In such a space, a near miss is as good as a mile, and evolution
can be no better than random search. However, as Hinton and Nowlan [96] so neatly
demonstrated: development can, under certain conditions, smooth the search space
that evolution operates in, thereby creating a gradient toward increasingly better
mutations (Fig. 1.8).

This process, known as the Baldwin effect [12, 62, 213], is possible because devel-
opment sweeps over several traits in a single agent, and sometimes exposes promising
static traits along the way. This can create a new gradient in the evolutionary search
space, rewarding descendants that more rapidly manifest the good trait during their
lifetimes (and retain it through the remainder of their lifetime). Following the gra-

13

combinations of alleles

fit
ne

ss
zone of increased fitness

Figure 1.8: The Baldwin Effect. Hinton and Nowlan [96] considered the evolution of a bitstring
that is only of value when perfectly matching a predefined target string. The search space of possible
combinations of alleles (bit values) therefore has a single spike of high fitness with no slope leading to the
summit (solid black line). “The good [string] is like a needle in a haystack.” Here’s where development,
through the so-called “Baldwin effect”, can potential guide evolution: Suppose that the “lifetime” of
each bitstring is lengthened from a single point to a period of time in which a portion of the string can
change. Then there is a chance that some string in flux, eventually, flips the right bits and stumbles upon
the good static string during its life. If evolution controls which portions of the string are flippable and
which are non-flippable (i.e. genetically determined), and the later are all correctly specified, then the
speed at which such individuals tend to hit the target will be proportional to the number of non-flippable
bits. Finally, it is reasonable to assume that the faster an individual discovers the good design during
its lifetime, the more fitness it accrues. Taken together, this has the effect of creating a gradient of
increasing fitness (dotted black line), leading up to the correct specification, that natural selection can
climb by incrementally hardcoding more correct bits in the genotype. “It is like searching for a needle in
a haystack when someone tells you when you are getting close.” (Redrawn from [96].)

dient requires a series of mutations that incrementally reduce development such that
the good trait becomes “locked-in” in more morphologically-static descendants [244].
Development is thus a ladder that, like Wittgenstein’s, can be thrown away once it
has been climbed. However this is only possible if such mutations exist.

When a behavioral change manifests late in the lifetime of a developing robot,
it might discover a promising static design at the end of its life. The sequence of
mutations required to prepone or “earlify” this trait such that it arises increasingly
earlier in the lifetimes of descendants, might be hard to find or might not exist at
all. Symmetrically, if a promising static design is discovered early in the lifetime of
a robot, but the robot develops out of it, the hypothetical series of mutations that
prolong this behavior may be illusory or impossible to execute without completely
disrupting behavior. Indeed, one of the first experiments to explore the interaction
between evolution and (neurological) development in controllers onboard real robots
[77], found that such mutations are unlikely to exist if agents exploit developmental
change for behavior.

14

Figure 1.9: Two sides of the same space. In each plot, points on the horizontal axes directly map
onto a 2D continuous design space. For example, x could encode the initial elastic modulus of a bipedal
robot’s two limbs, and y might then indicate their initial placement along the circumference of its spherical
trunk. The vertical axis is fitness. On the left, we have a highly-fit genotype (red spike) among a sea
of designs with much lower fitness (blue waves). The red design might be an upright bipedal walker
with the appropriate elasticity, while the blue designs perhaps can only scoot, tumble, or row themselves
forward (if they can move at all). Evolution cannot see the red spike, as we can. Evolution only “sees”
the relative elevation beneath each design in the current population. On the right: the aftermath of the
Baldwin effect. Developmental plasticity alters the space by introducing a gradient: Proximity to the
great design determines the speed and reliability with which it may be expressed during development,
and thus determines (expected) fitness.

When picturing Hinton and Nolwan’s idealization as a single column of high fitness
in the middle of an abstract 1D design space (Fig. 1.8), it can be difficult to imagine
how evolution moves through a real, multidimensional search space. So at the risk of
being redundant, I have included a second depiction of the Baldwin effect (Fig. 1.9) in
which the vertical axis is again fitness, but in which the horizontal axes directly map
onto continuous parameters of the design. Development unfolds on a line in this space,
with the vast majority of possible trajectories missing the good trait combination
(the red spike of high fitness in Fig. 1.9).6 Evolution discretely samples the space
by setting the initial conditions (starting point) and how development may unfold
across the landscape (curvature and length of the line) in time (acceleration along
the curve) until death. Once found, successful developmental trajectories can become
canalized by evolution such that the good trait combination becomes increasingly
likely in future descendants. In the limit, the line of development shrinks to a point:

6There are typically many such (potentially Baldwinifiable) local optima, and so there is also
evolution: a population spread out on the landscape, not just a single developmental robot.

15

the initial conditions.

1.9 Evolved Development in Robots
Hinton and Nowlan [96], and the cascade of subsequent computational/analytical
studies to investigate this interplay of evolution and development, considered either
abstract phenotypes [2, 5, 6, 19, 66, 74, 80, 150, 173, 202, 206, 228, 238] or control
systems onboard morphologically-static hardware [77, 102]. Evolution and develop-
ment could not modify body plans because, without exception, the body plan (if it
existed) was fixed.

Several computational but embodied models of prenatal development have been
forwarded [14, 29, 59, 60, 64, 65, 68, 109, 154, 160]. However, because development
occurred prior to the evaluation period, as a kind of artificial embryology, the behav-
ioral impact of a mutation still kicked-in at “birth” (t = 0), and so the Baldwin effect
could not occur.

Prior to the work documented in this thesis, there were only three cases reported
in the literature in which a simulated robot’s body was allowed to change while
it was behaving. In the first two cases [114, 243], it was not clear whether this
ontogenetic morphological change influenced the evolution of behavior in any way.
Later, Bongard [28] demonstrated how such change could lead to a form of self-
scaffolding that smoothed the fitness landscape, not unlike the Baldwin effect. But
the Baldwin effect did not occur, because it could not occur.

Bongard’s experiments began on familiar ground. Populations of neural controllers
were evolved to steer (the configuration of) a simulated quadruped/hexapod so that
it moved toward a simulated light source. But this robot had a developmental trick
inside each of its four (or six) limbs. The robot was, for most of its evolutionary
history, deployed with an anguilliform body plan—an eel with an actuated spine.
As the initially legless robot behaved (varied its configuration), limbs were slowly
extruded from its trunk. As the limbs lengthened, they dipped their resting angle
about the shoulder joint, transitioning the robot from a prone to upright stance,
during development (shape change).

Early in evolution, limb growth occurred over the robot’s entire evaluation pe-
riod. In a series of four evolutionary stages, the rate of extrusion was incrementally
increased such that the final, upright legged body plan was realized increasingly ear-
lier in developmental time, and held fixed for the remainder of the robot’s lifetime.
In the final stage of evolution, the robot was deployed with its final shape from the
very beginning of its behavior; development had been completely canalized.

Thus, by the end of evolution, these robots were identical to a control treatment
but for a single isolated difference: one group had ancestors that developed, and the

16

other had ancestors which did not develop. However, this clean experimental design
came at a cost: the robot’s initial shape, and the way in which its shape developed,
were both manually fixed a priori. Thus evolution could not modify morphological
development, indeed, it could not modify morphology at all.7

1.10 Resilient Machines

Only variety can destroy variety.
—W. Ross Ashby (1956)

It is often the case that an artificial system may be trained to achieve high fitness
in one environment, but fail spectacularly under even the slightest perturbations
[8, 37]. By temporarily permitting shape to vary during training, the final, manually-
canalized robot from Bongard’s experiment [28] exhibited increased robustness in
novel environmental conditions (random external perturbations). Shape change thus
acted as a form of regularization: the robot had to maintain phototaxis while changing
its body. This increased breadth of sensor-motor contingencies prevented the robot
from overfitting its controller (of configuration) to the idiosyncrasies of a small sample
of circumstances [108]. The upshot was robustness by virtue of a good static structure.

However, for a system to remain viable as its environment varies, the system
must also be able to vary itself. Only variety can destroy variety, as Ashby put it.
Thermostats, centrifugal governors, and Ashby’s Homeostat8 are examples of such
systems—regulators—with the “requisite variety” to absorb and eliminate variety in
the system being regulated. The field of each of these regulators is “ultrastable”, as

7The linear-actuators-as-semipermanent-body-segments trick was also employed by a later robot
to automatically adjust leg length in situ for different supply voltages [174] and terrain [175]. How-
ever, leg length did not vary during behavior (locomotion), so the Baldwin effect could not occur.

8The homeostat was built by Ashby in the late 1940s using surplus military equipment. It
consisted of four identical electrically-coupled units. Each unit sent its output to, and received
an input from each of the other three. A pivoted magnet sat atop each unit. DC output was
proportional to the angular deviation of the unit’s magnet from its central position. The magnet’s
deviation was in turn a function of input, internal circuitry, and adjustable parameters supplied
by stepping switches. When current exceeded a certain value, the switches were energized, moving
the parameters to new values. The field (defined in section 1.3) of the Homeostat’s four variables
(magnet positions) had only one state of equilibrium (centered), which was either stable or unstable.
When the magnet’s position was perturbed externally by mechanical force, the system would cycle
through switch settings according to a random number table until it found a stable field and reached
equilibrium, where it would actively resist subsequent external perturbations.

17

Ashby would say, tending all the time towards stabilization and physiologic constancy.
However, these regulators are controllers (Fig. 1.2), not robots.9

In 2006, Bongard et al. [27] reported a “resilient machine” that, through contin-
uous self-modeling, could vary its behavior to compensate for structural loss due to
damage. The details are not important for the story I have chosen to tell about in-
creasingly protean machines, beyond noting the relationship between regulators and
models, which was made clear by Conant and Ashby [51]:

. . . success in regulation implies that a sufficiently similar model must have been
built, whether it was done explicitly, or simply developed as the regulator was
improved.

In this case, explicit body schema were built from the ground up, in silico, through
sensorimotor experiment in the physical robot. Because the robot modeled its struc-
ture, rather than just its behavior, it could absorb variation in both. Later, Cully
et al. [55] demonstrated how a robot could in some cases do this much faster. However
in both approaches, the mechanical details of the robot (structure/material/shape)
were presented to the control system as a fait accompli, limiting the depth of insult
from which such machines can recover.

These two studies were intended as proofs of concept—basic science that will
undoubtedly be refined with additional research and development. In the meantime,
they seem to have spelled out the limitations of clever software trapped inside non-
protean machines. Such behaviorally-plastic yet morphologically-static robots can
recover masterfully from certain shallow insults, such as the loss of a single leg to
injury. But they do not have the requisite variety to recover from deeper mechanical
damage, such as the removal of all limbs or being cut into a hundred smaller pieces.

The resiliency of such robots is limited not only because they cannot re-generate
structure, motors or sensors—but because they cannot generate these body parts
in the first place. Their ability to perceive the environment, and act against it,
is constrained within a fixed set of perceptual categories and action alternatives,
rather than open-ended. This shackles the robot’s epistemic autonomy [36]: the
robot’s overall capacity for knowledge and cognitive success beyond what the designer
predicted to be relevant for the problem at hand.

9Any system that cannot move through the environment has at best a questionable claim to be
a robot.

18

1.11 A Protean Machine?

And so it was that two very tired young men trailed a microphone
down into Baker Street from the upstairs window, and picked up
the random noise of dawn traffic in the street. I was leaning out of
the window, while Gordon studied the cell. “It’s growing an ear”,
he said solemnly (ipsissima verba).

—Stafford Beer (2001)

There is a Cartesian bias in modern AI of presupposing a body plan and then build-
ing (ever deeper, hierarchical and non-linear) mappings between its fixed percepts
(sensors) and fixed action space (motors) [129]. Increasingly protean machines can,
as we will see, increasingly determine their own categories of perception and action,
and thus position themselves at a continually greater distance from the bias, intuition
and cognitive limits of their human designer. What follows is the story of the first,
and some would argue the only truly protean artificial machine.

Paskian AI

In 1956, on Baker Street in the heart of London, Gordon Pask and Stafford Beer grew
an electrochemical ear.10

Platinum wire electrodes were immersed in a shallow acrylic dish containing an
acidic aqueous metal-salt solution [177] (Fig. 1.10). The flow of electricity through
the solution caused the deposition of metal on the floor of the dish along lines of max-
imum current (Fig. 1.11). Metal deposits in effect extended the electrodes, generating
circuits ab initio, instead of using components with their own well-defined forms and
functions. In this electrochemical soup, there was only raw material: metal ions.

As metallic threads were being built out of ions on relatively negative electrodes,
the acid worked to dissolve the threads back into ions. Threads that kept pace with
the acid back reaction, drew more current down them due to their very low resistance
(relative to the solution) and were thus reinforced and extended with additional metal.
Growth was not linear, however. Each thread was fringed by short thin tendrils that
extended into the solution in all directions, testing the waters as it were, before re-
tracting back toward the main branch in perpetual dis/integration. Under a constant
input set of voltages, threads competed for current, grew and dissolved, broke and

10The basic electrochemical system had been developed earlier in collaboration with A. Addison,
a member of Heinz von Foerster’s laboratory at the University of Illinois ([179], p. 107).

19

Figure 1.10: Electricity flows through an aqueous solution of iron salts, depositing low resistance metallic
threads and influencing the subsequent flow of the current and metal (Pask [178]).

regenerated, bifurcated and sometimes combined before settling into a dynamically
stable network with asymmetrical structure and robustness.

The electrochemical assemblage also displayed a kind of memory. When the input
set of voltages were held constant, a big dense metallic tree grew steadily until it
reached a stable structure. If the input set was then changed, the tree slowly shifted
and restructured itself. If the input was then set back to the original distribution,
the tree regenerated the initial structure, but this time stability was achieved much
more quickly. This was because dissolution was gradual and residual particles helped
subsequent threads grow back rapidly along the same lines. The longer a tree had been
stably growing, the slower it disintegrated when the input set of voltages changed,
and the quicker it returned to its original structure when the inputs were reset. That
is, the robustness of the tree was determined by the conditioning time: reinforcement
learning was possible.

A sensor electrode was dipped into the solution. The generated waveform of the
electrical output could be conditioned by rewarding thread networks with an increase
in current supply, which released an influx of free metal ions—the building blocks of
threads. As a result, certain types of structures were allowed to survive and grow
while those that did not act appropriately could be starved of ions and tended to die
off. Pask noted that, regardless of how the electrodes were configured, the system
would tend to develop a thread structure that led to current flowing in such a way
that it was rewarded further. It is important to note that this reward is simply

20

Figure 1.11: Dendritic threads of metal grow toward an electrode in iron-sulfate solution (Pask [179]).

an increased capacity for growth—there is no specification of what form the growth
should take.

Thread networks could be steered and selected to become sensitive to a wide
variety of stimuli impinging on their structure. Electrical output was noticeably
affected by all sorts of variables, including, but not limited to temperature, pH,
magnetic fields, and vibrations. So Beer and Pask took a microphone, hung it out of
a window on Baker Street and picked up noise from the street. The electrochemical
soup started to vibrate, and with reward, started to form a function in response to
audio signals.

The device was later grown to recognize specific frequencies, as from a buzzer.
Whenever a buzzer was sounded, if the electrical frequency of the buzzer was partially
replicated at the sensor electrode, then the system was rewarded with its metal ions.
By rewarding structures whose output criteria correlated with specific input criteria
(the buzzer sound), the system became better at recognising the buzzer. Importantly
though, by changing the input criteria, say by using electromagnetic fields rather than
vibration, the system could dynamically grow a new type of sensor.

In proceedings of an Interdisciplinary Conference on Self-Organizing Systems

21

(May, 1959), Pask’s paper [178] includes a transcribed discussion from his presen-
tation. Responding to Alan Newell and John McCarthy, Pask reported two kinds of
devices that were grown out of metal ions:

We have made an ear and we have made a magnetic receptor. The ear can
discriminate two frequencies, one of the order of fifty cycles per second and the
other of the order of one hundred cycles per second. The “training” procedure
takes approximately half a day and once having got the ability to recognize
sound at all, the ability to recognize and discriminate two sounds comes more
rapidly. . . The ear, incidentally, looks rather like an ear. It is a gap in the
thread structure in which you have fibrils which resonate with the excitation
frequency.

Pask’s assemblage built up initially functionless elements (metal ions) into struc-
tures that could examine initially unspecified attributes of their surroundings: vibra-
tions or magnetic fields. The machine had epistemic autonomy relative to its designer
(Pask) because it was not bounded by a closed set of perceptual categories (“filters”).
Instead, the machine was free to find its own “relevance criteria” in the world, and
construct new kinds of sensors that were increasingly sensitive to it [36]. According
to Pask [179]:

By definition, intent and design this cannot occur in an artifact made from
well-specified components.

Only a somewhat ill-specified system—a more or less protean machine—can achieve
epistemic autonomy. This is important because evolution is essentially a hill climbing
process, and as Pask noted:

When the active elements of a hill climber meet an insoluble problem, the
uncertainty about which of several possible actions to take is resolved by a dice
throw. The thread, faced with the same dilemma, must become one kind of
thing or another – there is no finite set of possibilities to choose between –
and from the observer’s viewpoint a structural uncertainty is resolved. This
is precisely the behaviour remarked upon by the earlier embryologists – that
development of a cell along a quantitative gradient gave rise to qualitative
change.

When Beer [18] looked back on his “filigree friendship” with Pask, four decades
after their electrochemical experiments on Baker Street, he did not mince his words
explaining the significance of the first protean machine:

This was the first demonstration either of us had seen of an artificial system’s
potential to recognize a filter which would be conducive to its own survival and

22

to incorporate that filter into its own organization. . . [T]his facility would trans-
form the world of information technology, if it could ever forget and transcend
its origins in mere data processing. But that would require the overthrow of
yet another paradigm.

1.12 Increasingly Protean Machines
By virtue of greater and greater morphological autonomy, each body plan in a se-
quence of increasingly protean machines possesses a greater capacity for robustness,
agency and epistemic autonomy than any of the less protean body plans preceding
it. However, optimizing a system whose sensor/motor modalities are continuously
forming and reforming poses several ill-defined intellectual and technical problems. If
the current paradigm of Cartesian AI is to be overthrown in favor of a more Paskian
approach, additional empirical studies will need to be undertaken to more precisely
articulate these problems and their potential solutions. This section traces the liter-
ature from Pask [177] to modern protean machines through the lens of the present
thesis.

After Pask [177], two artificial systems were reported in the literature that evolved
de novo sensitivity using hardware that was reconfigurable in situ. Both were con-
ceived and built at the University of Sussex. In 1995, Thompson [232] evolved a
discriminator of 1 kHz and 10 kHz square wave inputs on a small corner of a field-
programmable gate array (FPGA), without a timer.11 Upon dissection, the discrim-
inator seemed to exploit strange recurrent loops, and parasitic capacitance between
unconnected components (blocks of transistors). But no one truly knows how it
worked. A few years later, Bird and Layzell [22] evolved a radio—by accident. They
set out to evolve an oscillator using a network of transistors, but the solution ended
up finding and utilizing radio waves emanating from nearby PCs. But, again, no one
fully understands how the system was interacting with its environment. For instance,
one of the evolved oscillators worked successfully until a soldering iron at a different
workstation in the lab was disconnected from a wall outlet.

Our evolutionary history, lifetime experiences, and the way we perceive space and
time makes it difficult for us to understand and optimize systems that are not well
explained by human-scale mechanics, metaphors, or mathematical formalisms that
impose somewhat stifling assumptions. The utility of protean circuits is therefore

11In conventional circuits, timing is supplied by capacitors, which require a constant amount of
time to charge, through a resistor, until discharge. Charge will also flow back and forth between the
plates of a capacitor, through an inductor, forming an electrical analogue of a tuning fork: a tuning
circuit. Design problems that involve timing are nontrivial in a network of transistors—or using a
FPGA, which implements combinational logic using groups of transistors—without resistor-capacitor
networks, tuning circuits, oscillators, resonators, timers, counters, clocks or crystals.

23

clear: the evolution of such systems introduces diverse creative designs beyond the
realm of human intuition. However, one could argue that these more modern systems
were less protean than Pask’s free-flowing metal structures, because their autonomy
was restricted to flipping a fixed set of switches on a fixed circuit board.

Other modern technologies exist with much more morphological flexibility than
Thompson’s FPGA and Bird’s radio. For instance, modular robots have been re-
ported that self-assembled, -disintegrated, and -replicated by changing the arrange-
ment of a fixed set of blocks [136, 196, 251, 257]; origami robots that self-folded
[73, 83, 92, 118, 156]; soft robots that underwent plastic deformation or semiperma-
nent elastic deformation [207–210]; and jamming robots that varied their material
stiffness [34, 167, 224]. Among these platforms are marvelous feats of creativity and
engineering. However, they lacked ontogenetic morphological autonomy relative to a
human operator. They were not free to vary their body plan. They were forced to
change according to an externally prescribed developmental schedule.

With our emphasis on autonomy, Pask’s electrochemical ear arguably remains the
most protean machine built to date. But how protean was it, really? Growth of
structure was steered by operant conditioning in one design at a time, on a single
timescale. So there was no possibility of Baldwinian effects: adaptive processes could
not interact across different timescales. Spatially, metal threads were mostly con-
strained to grow in two dimensions,12 and could not grow outside a solution full of
metal ions. The system therefore could not influence the world beyond modulating
the waveform of its electrical output. The configuration space (the set of all possi-
ble configurations the structure could perform) was thus well-specified by whatever
displays or motors Pask happened to attach to its outputs.

In order to achieve epistemic autonomy, the system would also need to take control
over the kinds of motor organs, effectors, and configurations it has available to influ-
ence the world [36]. It is contended here that autonomy can evolve by degrees with
increasingly protean machines. This follows from the fact that a morphologically-
static machine is bounded, if not fully determined by the complete specification of
its parts—whereas a more or less protean machine more or less determines its own
relationship with the world (and with its designer).

For this to be achieved, however, several conceptual and operational challenges
will need to be overcome. Any adaptive protean machine will likely need to balance
an energy budget, among many other concerns, and metamorphosis is metabolically
expensive—for animals, at least. This is why caterpillars are such voracious feeders:
they need to store up enough energy to change their body all at once into a butterfly.
The question is thus to what extent are relatively static periods of development merely
a proximate detail of animals, rather than an ultimate mechanism [234] or law of

12Given that electrodeposition is also possible in three dimensions [145], it should also be possible
to grow Paskian sensors out of plane.

24

adaptive success. It is unclear when and where (if at all) a robot’s morphological
freedom should likewise be clamped (e.g. as a crawling eating machine) in order to
accelerate the acquisition of new adaptive behaviors (e.g. land-to-air transition).

Appreciable morphological change in animals is not only expensive, it is often
unnecessary. A flying organism or robot that is passively gliding through the air
ought not shapeshift, especially out of wings. There would seem to be a kind of
ecological speed limit for restructuring a body plan relative to changes in the world
around it. Or perhaps there are tricks to perceptual and motoric constancy during
high speed morphological change that we simply cannot imagine.

In either case, assuming that an engineered system is capable of adaptive mor-
phological change in response to environmental conditions, it is unclear how it should
do so, beyond the examples of morphological plasticity observed in nature. Examples
include Wolff’s law [198]—bone grows in response to particular mechanical loading
profiles—and Davis’ law—soft tissue increases in strength in response to intermittent
mechanical demands. One can envisage other such laws that are not known to occur
in biology but could be helpful in a specific artificial system, such as liquefying in
response to pressure, or increasing stickiness in response to radiation [168].

If protean machines are eventually to perform useful work, these tricks and mech-
anisms of developmental plasticity must not only be understood but optimized. Opti-
mizing a protean system that may continuously vary its structure, shape and material
properties is extremely nonintuitive and underexplored. Thus, a study of the adap-
tive properties of such systems—and how they can best be optimized to render useful
work—is documented here.

1.13 Overview of the Thesis
This thesis is organized around six published papers, which form chapters 2 to 7.
The papers are presented chronologically with the exception of chapter 2, which was
written last but is presented first. Chapter 2 contains a fairly standard Lipsonian
experiment in which robot structure was permitted to vary in evolutionary time T , but
not developmental time t; evolved designs transferred to reality with static structures.
Succeeding chapters introduce experiments in which increasingly more aspects of the
robot’s design are allowed to vary in different combinations in T and/or t. Chapter
3 explores shape change in both T and t. Chapter 4 allows configuration-trajectories
to vary alongside shape, in both T and t. Chapter 5 permits changes in structure and
configuration-trajectories in T , as well as material change in both T and t. Chapter 6
investigates change to configuration trajectories in T < s, structural change at T = s,
and then shape change for recovery in T > s; evolved designs were transferred to a
physical robot that could vary both shape and configuration. The penultimate chapter

25

describes computer-designed organisms whose structure and material were evolved in
silico under configuration variance in T ; and whose structure, shape, material and
configuration, all vary during development in vivo. The final chapter summarizes
this progression, and, under the assumption that the reader is familiar with the main
results in the intervening chapters, states the contributions in greater detail than was
possible in section 1.2.

26

Chapter 2

Structure

Appeared as:
S. Kriegman et al., Scalable sim-to-real transfer of soft robot designs. In Proceedings
of the IEEE International Conference on Soft Robotics (RoboSoft) (2020).

Abstract:
The manual design of soft robots and their controllers is notoriously challenging,
but it could be augmented—or, in some cases, entirely replaced—by automated de-
sign tools. Machine learning algorithms can automatically propose, test, and refine
designs in simulation, and the most promising ones can then be manufactured in
reality (sim2real). However, it is currently not known how to guarantee that be-
havior generated in simulation can be preserved when deployed in reality. Although
many previous studies have devised training protocols that facilitate sim2real transfer
of control polices, little to no work has investigated the simulation-reality gap as a
function of morphology. This is due in part to an overall lack of tools capable of
systematically designing and rapidly manufacturing robots. Here we introduce a low
cost, open source, and modular soft robot design and construction kit, and use it to
simulate, fabricate, and measure the simulation-reality gap of minimally complex yet
soft, locomoting machines. We prove the scalability of this approach by transferring
an order of magnitude more robot designs from simulation to reality than any other
method. The kit and its instructions can be found here: voxcraft.github.io

2.1 Introduction
The simulation-reality gap1 for rigid-bodied robots is steadily closing. Computational
models of rigid body dynamics can now be regularized and tuned so that control poli-
cies optimized in simulation are just as successful when tested on the physical system
[27, 104]. The reality gap for soft robots, on the other hand, remains uncharted. It
could be wider than the gap for rigid bodies, or not. Soft bodies are more challenging

1Henceforth, “the reality gap”—as coined by Jakobi et al. [108].

27

https://ieeexplore.ieee.org/abstract/document/9116004
https://voxcraft.github.io/

Figure 2.1: The top 100 simulated 2-by-2-by-2 configurations of passive (cyan) and volumetrically-
actuating (red) voxels (a) were manufactured in reality (b).

to accurately simulate, design, and precisely control. But, they are also, by defini-
tion, more permissive to simulation inaccuracies, design flaws, and control precision:
A soft gripper or foot will passively conform to complex objects and terrain, reducing
the burden on the simulator to perfectly capture any single, “true” surface contact
geometry.

Quantifying which soft robot designs, policies and behaviors can be faithfully
simulated is critical not only for robotics, but also synthetic approaches to understand
functional plasticity of biological systems during development and regeneration. For
both domains, testing candidate hypotheses in reality is expensive, time consuming,
and, in some cases, dangerous. With the recent development of several high-space,
many-body, GPU-accelerated soft body simulators [97, 144], sim2real for soft robotics
and synthetic biology has become more feasible. However, because these simulators
have yet to be employed to design physical systems, their transferability is currently
unknown.

Previous work has demonstrated methods that promote successful sim2real trans-
feral of soft object manipulation but not soft robot behavior. For example, a rigid-
bodied robot arm was successfully trained in simulation to fold towels and drape
pieces of cloth over a hanger [149]. However, the reality gap was not quantified be-
yond a binary success rate for each task. Additionally, the robot’s geometry was fixed
and controllers were then optimized for it, whereas in the work reported here, the
robot’s geometry is part of the solution space.

Hiller and Lipson [94] evolved the overall geometry and distribution of hard and
soft materials in simulation, and transferred the structures and passive dynamics of
various cantilever beams. In a separate experiment that included actuating materials,
Hiller and Lipson evolved the morphology and behavior of soft robots in simulation,

28

Table 2.1: Summary of published sim2real transference.

Author/citation Year Controllers Morphologies

Miglino et al. [152] 1994 1 1
Jakobi et al. [108] 1995 2 1
Harvey et al. [89] 1997 4 1
Lipson and Pollack [140] 2000 3 3
Bongard et al. [27] 2006 34 2
Hiller and Lipson [94] 2012 1 5
Koos et al. [116] 2012 2 2
Moeckel et al. [158] 2013 1 1
Caluwaerts et al. [35] 2014 2 1
Cully et al. [55] 2015 10 10
Cellucci et al. [38] 2017 1 3
Tobin et al. [235] 2017 1 1
Rusu et al. [200] 2017 1 1
Peng et al. [183] 2018 1 1
Pinto et al. [189] 2018 3 1
Tan et al. [230] 2018 2 1
Golemo et al. [84] 2018 1 1
Matas et al. [149] 2018 3 1
Kwiatkowski and Lipson [127] 2019 2 2
Hwangbo et al. [104] 2019 3 1
Kriegman et al. [124] 2019 1 5
Nachum et al. [166] 2019 3 1
Akkaya et al. [3] 2019 1 1
Rosser et al. [197] 2019 1 16
The results presented here 2019 1 108

and then built one of the evolved designs physically. However, in order to transfer
the simulated behavior of this one design, the physical robot needed to be placed in a
pressure and vacuum chamber, whereas the hundreds of soft robot designs built here
can be internally pressurized and actuated.

More recently, Kriegman et al. [124] subjected a simulated soft robot (composed
of elastic voxels) to a series of damage scenarios that removed increasingly more of
the robot’s structure. In each scenario, the robot was challenged to recover function
(locomotion) by deforming its remnant structure, without changing its predamage
control policy. A pair of recovery strategies, automatically discovered by an evolu-
tionary algorithm in simulation, were transferred to reality (using silicone “voxels”),
but function was not: The physical system could deform its resting structure as dic-
tated by the recovery strategy, but it could not locomote, before or after damage.
The physical robot was heavy, had high friction feet, and was symmetrically actuated
in phase, so it just oscillated in place.

To determine the particular challenges and opportunities of soft robot transferal, it

29

Figure 2.2: A random morphology in the design space shown at atmospheric (resting; a), positive
(expanding; b), and negative (compressing; c) pressure.

would be useful to greatly scale up the number of design/policy pairs transferred. To
this end, we present a soft robot design and construction kit based on the silicone voxel
modules used in [124], but miniaturized to increase stability, simplified to improve
reproducibility, and arbitrarily actuated to permit the transferal of locomotion.

Other modular yet rigid-bodied robot design and construction kits exist, such as
Molecubes [258]. However, our kit is easier, faster, cheaper, and safer to use. In short,
silicone is molded into hollow voxels, and tubing is attached to supply low pressure
actuation from a hand pump, causing volumetric changes in one or more of the voxels
(Figs. 2.2 and 2.3). For simple behaviors robust to actuation noise, there is no need to
use a highly-pressurized air supply or program microcontrollers for open-loop control.
There are also no expensive motors or power supplies.

Here, we employ the kit as an instrument to measure the reality gap as a function
of morphology (Table 2.1). To do so, we fabricated 108 morphologies (transferal
of structure) and compared the behavior of nine simulated designs to their silicone
equivalents (transferal of behavior). We hope that the kit’s affordability, safety, speed,
and simplicity will generate increasingly more, and more reproducible, data about the
automated design of increasingly competent soft machines.

2.2 Methods

The design space.
Following [94] and [124], our kit uses elastic voxels as building blocks of structure.
Here, we considered a 2-by-2-by-2 cartesian lattice workspace, within which voxels
were connected together to form a robot. At each x,y,z coordinate, voxels could either
be passive, volumetrically actuated, or absent, yielding a total of 38 = 6561 different

30

configurations. We evaluated each configuration in simulation.

The simulation.
We used the soft-body physics engine Voxelyze [95] to simulate robots composed of
actuating and/or passive, elastic voxels. The simulator models the distance between
adjacent voxels as Euler-Bernoulli beams (critically damped; ζ = 1). Additionally,
a collision detection system monitors the distance between the voxels on the surface
of the robot at each timestep. If a pair of surface voxels are detected to collide
(intersect), a temporary beam (underdamped; ζ = 0.8) is constructed between the
two until the collision is resolved.

Designs were simulated with a gravitational acceleration of -9.81 m/s2, and ini-
tialized on top of an infinite surface plane at z = 0. Coulomb friction is applied
to voxels in contact with the surface plane. Voxels were simulated to have 1 cm3

resting volume (resting beam lengths), with Young’s modulus 107 Pa, Poisson’s ratio
0.35, and coefficients of static and kinetic friction of 1 and 0.5, respectively. These
hyperparameters were adopted from [124]. For more details about how the physics
are actually modeled, see [95].

Volumetric actuation was implemented by varying the rest length between voxels,
in all three dimensions, when computing the elastic force between them. Volumet-
ric expansion in simulation and reality are both roughly spherical (Fig. 2.2b), but
compression in reality is more complex and difficult to simulate: the voxels buckle
(Fig. 2.2c). So volumetric actuation was here limited to expansion only (+90% rest
volume). The active voxels expand in phase with each other as dictated by a central
pattern generator: a sine wave with frequency 4 Hz and amplitude 1.9 cm3. When
the sine wave is at or below zero, the active voxels remain at their resting volume (1
cm3). This produced quasistatic dynamics.

Each design was simulated for 8831 timesteps, with a stepsize of 0.000453 seconds,
resulting in a total simulation time of 4 seconds. During the first 552 times steps (0.25
sec), the design was allowed to settle under gravity before actuation begins, ensuring
that movement (if any) is a result of actuation, rather than passively falling forward.
Just before actuation, the design’s initial center of mass is recorded as (x0, y0, z0).
The active voxels are then actuated for 3.75 sec at 4 Hz, or 15 actuation cycles.

An exhaustive search of all 6561 designs (in batches of 50) took 58 CPU hours
(1.8 wall-clock hours) on a single AMD Ryzen threadripper 1950X 16-core/32-thread
processor. Fitness was taken to be the net displacement (away from the origin in any
direction) of the design’s center of mass, in terms of euclidean distance in the plane,
where the origin is defined by the x, y components of the design’s initial center of

31

mass (x0, y0). Fitness is thus defined as:

F =
√

(xt − x0)2 + (yt − y0)2 , (2.1)

where xt, yt are the final coordinates of the design at the end of the evaluation period.

Reality.
Following Kriegman et al. [124], simulated voxels were realized physically as pneumat-
ically actuated, hollow silicone voxels. The physical robot in [124] was constructed to
transfer symmetrical shape change, so its actuated voxels were distributed symmet-
rically and hooked into a single pressure inlet. Thus, pressure oscillations occurred
symmetrically in phase, and the robot could only pulse in place. Moreover, due to thin
voxel walls relative to overall voxel size, and the tubing and glue used to bond them
together, the robot in [124] could not fully support its own weight. The robot was
lifted off the ground by placing it on top of a small petri dish, positioned underneath
a segment of entirely passive voxels in the center of the robot’s ventral surface. This
permitted ventral (and more extreme global) changes in surface curvature, yielding
successful sim2real transfer of shape change, but not locomotion.

The construction kit presented here rectifies the weight issue by miniaturizing the
voxels—voxel length was halved (from 3cm to 1.5cm) and the wall thickness remained
the same (1mm), reducing voxel mass from 4.3g to 1.2g (including tubing but not
pneumatic connectors). Further, the inter-voxel tubing and glue was replaced with
holes punched through the walls of adjacent active voxels in the same x,y slice, before
attaching them with a shared bottom layer (Fig. 2.3d). Finally, locomotion is now
possible because separate contiguous sections of voxels in each slice can be arbitrarily
actuated in or out of phase with other sections across the body.

The build protocol.
The voxels were manufactured using a single-axis rotational molding machine. First,
an open-face mold was fabricated by interlacing 26 acrylic strips into a flat base, to
form a lattice of cubic concavities, resembling an ice-cube tray (Fig. 2.3a). Mold
components were laser-cut (VLS2.30, Universal Laser System) from a flat acrylic
sheet with a thickness of 0.025 inch. Next, silicone (Dragon Skin 10 Fast; Smooth-
On, Inc.) was poured into the acrylic mold (Fig. 2.3a), and a spatula was used to
spread the silicone along the interior walls of each cavity (Fig. 2.3b). Colored pigment
was added to each batch of silicone to indicate whether the voxel was active or passive,
simplifying the assembly process. Here we used pink for active voxels and blue or
yellow for passive voxels.

32

Figure 2.3: Manufacturing modular soft robots. Hollow, silicone voxels were created by partially filling
an open-face mold with silicone (a), using a spatula to spread it along the interior walls (b), and then
securing the mold to a 1-axis rotational molding machine (c). This process allowed excess silicone to drip
out of the mold, while spreading the remaining silicone into a thin uniform layer. The cured, bottomless
voxels were then appropriately arranged and connected for each x,y slice of the design, and bonded with
a shared bottom layer (d). Finally, tubing was attached (e), and the slices were stacked and bonded to
form the design (f). Video: youtu.be/jbQ2T7jIYRU.

The mold was then flipped upside down and secured to a 1-axis rotational molding
machine. The machine was clamped to a table with binder clips, angled 45◦ relative
to horizontal, and set to rotate 90◦ every 45 seconds (Fig. 2.3c). This allowed the
silicone to flow and evenly coat the walls of the mold, as excess silicone dripped out.
After the voxels partially cured for 25 minutes at room temperature, the mold was
moved to an incubator, with a temperature of 60◦C for another 20 minutes. (Without
an incubator, the silicone will take 75 minutes to fully cure at room temperature.)

The above steps were then repeated to add an additional layer of silicone. Once
the second layer cured, the bottomless voxels were removed from the mold using an
X-Acto knife, and excess silicone around their edges was trimmed.

In the next step, each x,y slice (or dorsal plane) of the design was assembled by
using Sil-Poxy (Smooth-On, Inc.) to bond adjacent voxels and prevent the slice from

33

https://youtu.be/jbQ2T7jIYRU

shifting. Holes were then punched between adjacent active voxels so that contiguous
collections of voxels could be actuated together in phase. Each actuator group needed
to contain at least one voxel on the surface of the design so that it could be controlled
by an external pressure inlet. To create the bottom layer, two 1mm-thick rulers were
attached to an acrylic substrate using double-sided tape and silicone was poured in
the space between them. Then, the slice of bottomless voxels was flipped, open-side
down, onto this uncured silicone layer (Fig. 2.3d).

After the bottom layer cured, a thin layer of silicone was applied with a popsicle
stick along the outermost portions of the interstices of the voxels, bonding adjacent
voxels (without gluing over inter-voxel holes). Then, the slice was cut from the
silicone sheet and a hole was poked into the side of one exterior voxel from each
group of active voxels. Next, a 1/32” ID silicone tube was inserted into the hole, and
glued in place with Sil-Poxy, applied with a Q-tip (Fig. 2.3e). The end of this tube
was then connected to a straight pneumatic connector, which was connected to 1/16”
ID silicone tubing.

Occasional imperfections in alignment, silicone thickness, or inter-voxel hole sizes
would result in leaky structures. Leaks were detected by filling a beaker with water,
submerging the voxels, and inflating them. Bubbles would emanate from leaks, which
were repaired with Sil-Poxy. After repairing any leaks, the slices were stacked on top of
each other and bonded together using a thin layer of silicone (Fig. 2.3e). Finally, these
layers were connected pneumatically with assorted pneumatic connectors, attached
to 1/16” ID silicone tubes.

2.3 Results

Figure 2.4: The 2D tessellation of 8D ternary vec-
tor space used in Fig. 2.5.

To test the effects of morphology on fitness
and sim2real transfer success, it is useful to
first visualize the design space. However,
because there are eight cartesian voxel co-
ordinates in the chosen workspace, the de-
sign space here is eight dimensional, which
is difficult to draw (let alone conceptual-
ize) without dimensionality reduction. By
nesting the dimensions of a search space
onto a single plot (Fig. 2.4), the entire
space can be visualized as a 2D heatmap.
This strategy was used by Cully et al. [55]
to neatly visualize the predicted fitness of
a very large library of control policies, as a

34

none passive active
vox 1

no
ne

pa
ss

iv
e

ac
tiv

e
vo

x
2

Figure 2.5: Simulating modular soft robots. The design space is plotted as a heatmap, containing
one cell for each of the 6561 possible configurations. Lighter colored cells are fitter designs (Eq. 2.1).
Each design is defined by a vector of eight ternary values, indicating what kind of voxel (none, passive,
or active) the design contains at the eight lattice points in the 2 × 2 × 2 workspace. The 8D ternary
vector is reduced to a 2D heatmap by nesting pairs of dimensions within each other: four, nested 3× 3
grids result in a 34 × 34 = 81× 81 overall heatmap.

function of the time a robot’s six limbs were in contact with the simulated ground
plane: 6D quinary control space was mapped to 2D, by nesting pairs of dimensions
within each other.

Here, the 8D ternary morphology space was reduced to 2D by plotting pairs
of dimensions nested within each other (Fig. 2.5). The pixel in the exact center of
Fig. 2.5, for instance, represents the configuration consisting entirely of passive voxels,
and thus cannot locomote (F = 0). Likewise, the pixel in the top right-hand corner
of the heatmap represents the configuration of all active voxels (Fig. 2.6d), which
actuated symmetrically in phase, and thus (given its flat ventral surface) could not
locomote across the flat ground plane (F = 0). Finally, the pixel in the bottom
left-hand corner contains no voxels at all, and thus F = 0.

For locomotion, a good design obviously needs to have a body, rather than none

35

Figure 2.6: Measuring transferal from simulation to reality. Nine designs (a-i) were evaluated
three times each in reality (green-to-blue gradient colored curves in a'-i'). The behavioral trajectories
start at the origin (green) and end at the robot’s final XY destination (blue) (in centimeters). The
simulated movement tracks (yellow-to-pink curves) are superimposed on top of the real ones. The
relative volume (normalized by rest volume) was also recorded for each design at four points during
actuation under water (a''-i''). The simulated and real behavior of designs e and f can be observed here:
youtu.be/UqjvmkYa9u4.

at all. With open-loop, in-phase actuation, designs also need to have asymmetrical
mass and/or actuator distributions, or they will not generate any forward movement.
However it is not clear, even for this minimal design space, exactly which asymmetrical
designs will yield the highest fitness. Yet we can see small clusters and lines of
similarly colored pixels in Fig. 2.5, representing morphologically similar designs with
similar fitness. This suggests that these configurations and substructures would be
relatively stable under random mutations or errors in fabrication.

Because fitness was measured by displacement in any direction away from the
origin (Eq. 2.1), there are four configurations—rotations, in the x,y plane, of a single
geometry and distribution of passive and active voxels—with different behaviors (they
moved in different directions) but very similar (if not identical) fitness. There were
also some configurations that, when rotated upward (in the x,z or y,z plane) fell
into the same basic orientation and behavior but with a slightly different heading.
Thus, configurations with similar fitness (similarly colored pixels) are reflected across
multiple, nested planes of symmetry in Fig. 2.5. These symmetries can also be seen
in the manufactured robots (Fig. 2.1b). The uniqueness of designs (i.e., the size of
the search space of morphologies) is therefore a function of how behavior is measured.

36

https://youtu.be/UqjvmkYa9u4

Figure 2.7: A higher resolution model in which each silicone voxel is approximated by a 3-by-3-by-3 group
of simulated subvoxels: a high-res voxel. The design in a and b are high-res instantiations of those in
Figs. 2.6e and 2.6f, respectively. Spherical volumetric expansion in a high-res voxel (c) was approximated
by increasing the rest length between the centermost subvoxel and the subvoxels at center of each face
(green subvoxels in d).

Fig. 2.6 shows the behavior of nine different designs in simulation and reality.
The real robot was actuated 90 times at 6 kPa pressure on a surface covered with
cornstarch (Argo®, ACH Food Companies, Inc.) to reduce friction, and is compared
to 23 simulated actuation cycles. Seven of the nine designs filled the cubic workspace
with passive and active voxels, while the other two share a more complex geometry: a
single-voxel limb attached to the face of a 2-by-2 plane of voxels (Fig. 2.6e,f). In one,
the limb is active (Fig. 2.6e), in the other it is passive (Fig. 2.6f). These two designs
achieved the two highest fitness scores (Eq. 2.1), in both simulation and reality.

By this measure, the reality gap appears small. However, these simulated designs
move very differently from their manufactured equivalents. The simulated morphol-
ogy in Fig. 2.6e pushes off its active limb, whereas in reality the design uses its limb
to pull itself forward, in the opposite direction. Likewise, the simulated morphology
in Fig. 2.6f pushes off its active 2-by-2 torso, whereas in reality the design uses its
torso to pull itself forward, in the opposite direction.

Majidi et al. [147] showed that the interfacial shear strength and coefficient of
friction of the surface on which their soft robot undulated determined the direction
of locomotion. They decomposed friction into load- and area controlled terms for
point and surface contacts, respectively. On slippery surfaces with low interfacial
shear resistance, the robot anchored about the point contact (expanded section) for

37

locomotion and pulled its surface contact (passive segment). However, on surfaces
with high interfacial shear resistance, the robot anchored about the surface contact
and pulled the point contact toward it. We hypothesize that such differences in
tribological properties could have caused our designs to move in opposite directions
in simulation and reality.

In an attempt to test this hypothesis and reduce the simulation-reality discrep-
ancies that cause the virtual configurations in Fig. 2.6 to move differently than their
physical realizations, we performed a grid search of various simulation hyperparam-
eters, including the coefficients of static and kinetic friction. However, we could not
identify a pair of friction coefficients that resulted in correct movement heading for all
nine of the behaving designs (Fig. 2.6a'-i'). This could be due to either low precision
or low accuracy of the model. To isolate and test the former possibility, we increased
the resolution of the simulated surface contact geometry by modeling each silicone
voxel as a 3-by-3-by-3 group of simulated “subvoxels” (Fig. 2.7), and then re-ran
the parameter sweep. Still, we could not find friction settings in which the simulated
movement direction matched the ground truth across all designs simultaneously. This
suggests that the accuracy of Coulomb friction model may be insufficient to model
this type of movement.

The Coulomb approximation assumes that friction is simply proportional to the
vertical component N of the reaction force, and independent of the contact area.
However, friction is also a function of the surface area and interfacial shear strength
τ , a fixed constant which is mostly governed by adhesion or mechanical interlocking
between the contacting surfaces. A better model would thus consider friction as
a function of both the normal force and the interfacial shear strength. However,
before fundamentally changing the simulator, we plan to evaluate designs in noisy
environments with imperfect control over actuation characteristics to avoid ascribing
high fitness to designs that exploited unrealistic properties of the simulation [108].
Additionally, data from reality could be used to automatically tune the geometry and
resolution of the simulated finite elements [27], or to predict the kinds of behaviors
that are more likely to successfully transfer [116], and which should be tested next [27].
Concurrently, we are investigating additional physical surfaces with varied tribological
properties in an attempt to match reality to simulation.

2.4 Discussion
In this paper, we introduced a low cost, open source platform for designing and rapidly
building soft robots, and used it to transfer 108 different morphologies (voxels on a
cartesian grid) from simulation to reality. We then measured the reality gap as
function of the robot’s design (geometry and distribution of passive and actuating

38

voxels) by tracking the behavior of nine transferred morphologies. Under one measure
(net displacement) the reality gap appeared rather small, but under another (velocity)
the gap was much wider, likely due to oversimplified tribological contacts between the
simulated ground plane and the robot’s ventral surface [147].

Although most of the transferred designs (99 out of the 108) were not actuated in
reality, they nevertheless served an important function: they were sketches. Sketches
let us think more clearly about the behavior or properties (e.g., stability) of a de-
sign without investing the additional time and resources required to fully build and
examine the design itself. Sketches, in other words, greatly increase the breadth of
exploration in design space. All sim2real methods embrace this utility of simplifying
sketches. Simulation, after all, is also a sketch.

However, there is a tacit assumption in robotics about Depth First. A typical
sim2real experiment begins by sending a complicated robot design across the reality
gap, and then endeavors to learn transferable policies that control the morphology
in all its complexity. But this is not how most design proceeds. An architect first
roughly sketches a structure, say, a bridge, on the back of a napkin. A diversity
of designs are then generated, tweaked, discarded or provisionally accepted—at this
shallow level of napkin realism—before more detailed blueprints are drawn under more
stringent constraints. Blueprints, too, undergo this breadthwise evolution, before the
most promising are realized physically, first as scale models (built from matchsticks
and glue instead of concrete and steel), then, finally, at full scale and cost. This
incrementally weeds out nontransferable features and adds mechanical complexity
only when and where it is necessary to do so, rather than globally from the outset.

The assumption that the reality gap can be bridged by policy search alone, with a
single robot design, is groundless. The desired behavior of a robot is typically much
more complicated than that of architecture. This suggests the necessity of more, not
less, sketches. Soft robots are more complicated still. This makes their automated
design that much more appealing, but implies the need for even greater breadth of
sketches, at more intermediate levels of realism. Though not every experiment will
need to start from a blank slate. Instead, designers (whether human or AI) could
leverage prior knowledge to reject truly awful designs before sketching them in the first
place. The designs transferred here add to a growing database (prior probabilities)
about which and how well different soft robot designs and behaviors can be realized
physically. Our construction kit has the potential to further increase this data by
lowering not only cost and build times but also the barrier of entry to soft robotics
for non-experts.

The generality of such data beyond robotics is currently not known, but it could
also have important implications for developmental biology and regenerative medicine.
The bioelectric and genetic control policies that orchestrate adaptive remodeling of
growth and form in organisms are not yet understood, but could, in future, be reverse-

39

engineered by machine learning, and then controlled externally to induce regeneration
in otherwise non-regenerative organisms (such as adult humans), or to reprogram oth-
erwise unbounded cancerous growth toward functional organogenesis [134]. However,
such advances in regenerative medicine and synthetic morphology will only be possible
if hypotheses generated in simulation are transferable and testable in reality.

40

Chapter 3

Shape

Appeared as:
S. Kriegman et al., A minimal developmental model can increase evolvability in soft
robots. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (2017).

Abstract:
Different subsystems of organisms adapt over many time scales, such as rapid changes
in the nervous system (learning), slower morphological and neurological change over
the lifetime of the organism (postnatal development), and change over many gen-
erations (evolution). Much work has focused on instantiating learning or evolution
in robots, but relatively little on development. Although many theories have been
forwarded as to how development can aid evolution, it is difficult to isolate each such
proposed mechanism. Thus, here we introduce a minimal yet embodied model of
development: the body of the robot changes over its lifetime, yet growth is not in-
fluenced by the environment. We show that even this simple developmental model
confers evolvability because it allows evolution to sweep over a larger range of body
plans than an equivalent non-developmental system, and subsequent heterochronic
mutations ‘lock in’ this body plan in more morphologically-static descendants. Fu-
ture work will involve gradually complexifying the developmental model to determine
when and how such added complexity increases evolvability.

3.1 Introduction
Many theories have been proposed as to how development can confer evolvability.
Selfish gene theory [57] suggests that prenatal development from a single-celled egg
is not a superfluous byproduct of evolution, but is instead a critical process that
ensures uniformity among genes contained within a single organism and in turn their
cooperation towards mutual reproduction. Developmental plasticity, the ability of an
organism to modify its form in response to environmental conditions, is believed to

41

https://dl.acm.org/doi/abs/10.1145/3071178.3071296
https://dl.acm.org/doi/abs/10.1145/3071178.3071296

Actuation cycle

t = 7 t = 7.05 t = 7.10 t = 7.15 t = 7.20
T = 47

Ontogenetic time (t)

T = 47
t = 2 t = 4 t = 6 t = 8t = 0

Phylogenetic Time (T)

T = 0 T = 69T = 24 T = 88T = 47

Figure 3.1: The evolutionary history of an Evo-Devo robot. One of the five phylogenies is broken
down into five ontogenies which is in turn shown at five points in its actuation cycle. Voxel color indicates
the remaining development. Blue for shrinkage, red for growing, and green for no further change. This
robot is featured in video at youtu.be/gXf2Chu4L9A

play a crucial role in the origin and diversification of novel traits [157]. Others have
shown that development can in effect ‘encode’, and thus avoid on a much shorter
time scale, constraints that would otherwise be encountered and suffered by non-
developmental systems [119].

Several models that specifically address development of embodied agents have
been reported in the literature. For example Eggenberger [68] demonstrated how
shape could emerge during growth in response to physical forces acting on the grow-
ing entity. Bongard [29] adopted models of genetic regulatory networks to demon-
strate how evolution could shape the developmental trajectories of embodied agents.
Later, it was shown how such development could lead to a form of self-scaffolding that
smoothed the fitness landscape and thus increased evolvability [28]. Miller [154] in-
troduced a developmental model that enabled growing organisms to regrow structure
removed by damage or other environmental stress.

42

https://youtu.be/gXf2Chu4L9A

In the spirit of Beer’s minimal cognition experiments [17], we introduce here a
minimal model of morphological development in embodied agents (figure 3.2). This
model strips away some aspects of other developmental models, such as those that
reorganize the genotype to phenotype mapping [29, 68, 119] or allow the agent’s
environment to influence its development [96, 154]. We use soft robots as our model
agents since they provide many more degrees of developmental freedom compared to
rigid bodies, and can in principle reduce human designer bias. Here, development
is monotonic and irreversible, predetermined by genetic code without any sensory
feedback from the environment, and is thus ballistic in nature rather than adaptive.

While biological development occurs along a time axis, it has been implied in
some developmental models that time provides only an avenue for regularities to
form across space, and that only the resulting fixed form — its spatial patterns,
repetition and symmetry — are necessary for increasing evolvability. Compositional
pattern producing networks (CPPNs, [221]) explicitly make this assumption in their
abstraction of development which collapses the time line to a single point. While
CPPNs have proven to be an invaluable resource in evolutionary robotics [42], we
argue here that discarding time may in some cases reduce evolvability and that there
exist fundamental benefits of time itself in evolving systems.

In this paper, we examine two distinct ways by which ballistic development can
increase evolvability. First, we show how an ontogenetic time scale provides evolution
with a simple mechanism for inducing mutations with a range of magnitude of phe-
notypic impact: mutations that occur early in the life time of an agent have relatively
large effects while those that occur later have smaller effects. This is important since,
according to Fisher’s geometric model [76], the likelihood a mutation is beneficial is
inversely proportional to its magnitude: Small mutations are less likely to break an
existing solution. Larger exploratory mutations, although less likely to be beneficial
on average, are more likely to provide an occasional path out of local optima. Second,
we posit that changing ontogenies diversify targets for natural selection to act upon,
and that advantageous traits ‘discovered’ by the phenotype during this change can
become subject to heritable modification through the ‘Baldwin Effect’ [66].

Hinton and Nowlan [96] relied on this second effect when they demonstrated how
learning could guide evolution towards a solution to which no evolutionary path led.
We consider a similar hypothesis with embodied robots and ballistic development,
rather than a disembodied bitstring and random search. We demonstrate how open-
loop morphological development, without feedback from the environment and without
direct communication to the genotype, can similarly alter the search space in which
evolution operates making search much easier. Hinton & Nowlan’s model of learning
was a type of environment-mediated development, in the sense that developmental
change stops when the ‘correct specification’ is found, and this information is then
used to bias selection towards individuals that find the solution more quickly. Our

43

work demonstrates that this explicit suppression of development is not necessary; and
that completely undirected morphological change is enough to confer evolvability.

3.2 Methods
All experiments1 were performed in the open-source soft-body physics simulator Vox-
elyze, which is described in detail in Hiller and Lipson [95].

We consider a locomotion task for soft robots composed of a 4×4×3 grid of voxels
(see figure 3.1 for example). Each voxel within and across robots is identical with one
exception: its volume. At any given time, a robot is completely specified by an array
of resting volumes, one for each of its 48 constituent voxels. If the resting volumes are
static across time then a robot’s genotype is this array of 48 voxel volumes; however,
because we enforce bilateral symmetry, a genome of half that size is sufficient. On
top of the deformation imposed by the genome, each voxel is volumetrically actuated
according to a global signal that varies sinusoidally in volume over time (figure 3.2).
The actuation is a linear contraction/expansion from their baseline resting volume.

Under this type of rhythmic actuation, many asymmetrical mass distributions will
elicit locomotion to some extent. For instance, a simple design, with larger voxels
in its front half relative to those in its back half, may be mobile when its voxels are
actuated uniformly. Although this design would be rather inefficient since it most
likely drags much of its body across the floor as it moves. More productive designs
are not so intuitive, even with this fixed controller.

An individual is evaluated for 8 seconds, or 32 actuation cycles. The fitness was
taken to be the distance, in the positive y direction, the robot’s center of mass moved
in 8 seconds, normalized by the robot’s total volume. Thus, a robot with volume
48 that moves a distance of 48 will have the same fitness — a fitness of one — as
a similarly shaped but smaller robot with volume 12 that moves a distance of 12.
Distance here is measured in units that correspond to the length of a voxel with
volume one. If, however, a robot rolls over onto its top layer of voxels it is assigned
a fitness of zero and evaluation is terminated. This constraint prevents a rolling ball
morphology from dominating more interesting gaits.

We have now built up all of necessary machinery of our first type of robot which
we shall call the Evo robot. Populations of these robots can evolve: body plans
change from generation to generation (phylogeny); but they can not develop: body
plans maintain a fixed form, apart from actuation, while they behave within their
lifetime (ontogeny).

1https://github.com/skriegman/gecco-2017 contains the source code necessary for repro-
ducing our results.

44

https://github.com/skriegman/gecco-2017

Lifetime

"
vk0
#

V
o
lu
m
e

Vk(t)

t

Evo

"
vk0
#

"
vk1
#

Vk(t)

t

Evo-Devo

Figure 3.2: The voxel picture. The kth voxel in an Evo robot maintains a fixed resting volume, vk0,
throughout the robot’s lifetime. Sinusoidal actuation is applied on top of the resting volume. In contrast,
the kth voxel in an Evo-Devo robot changes linearly from a starting volume, vk0, to a final volume, vk1,
over the robot’s entire lifetime. Growth, the case when vk1 > vk0, is pictured here, but shrinkage is also
possible and occurs when vk1 < vk0. When vk1 = vk0, Evo-Devo voxels are behaviorally equivalent to
Evo voxels. Voxels actuate at 4 Hz in our experiments (for 8 sec or 32 cycles) however actuation is drawn
here at a lower frequency to better convey the sinusoidal volumetric structure in time.

We consider a second type of robot, the Evo-Devo robot, which inherits all of the
properties of the Evo robot but has a special ability: Evo-Devo robots can develop as
well as evolve. These robots are endowed with a minimally complex model of devel-
opment in which resting volumes change linearly in ontogeny. We call this ballistic
development to distinguish it from environment-mediated development. Ballistic de-
velopment is monotonic with a fixed rate predetermined by a genetic program; its
onset and termination are constrained at birth and death, respectively; it is strictly
linear, without mid-course correction. The volume of the kth voxel in an Evo-Devo
robot changes linearly from a starting volume, vk0, to a final volume, vk1, within the
lifetime of a robot (figure 3.2). Accordingly, the genotype of a robot that can develop
is twice as large as that of robots that cannot develop, since there are two parame-
ters (vk0 and vk1) that determine the volume of the kth voxel at any particular time.
Although it is important to note that the space of possible morphologies (collection
of resting volumes) is equivalent both with and without development.

From gene to volume.
Like most animals, our robots are bilaterally symmetrical. We build this constraint
into our robots by constraining the 24 voxels on the positive x side of the robot to be
equal to their counterparts on the other side of the y axis. Instead of 48 Evo genes,
therefore, we end up with 24.

A single Evo gene stores the resting length, sk, of the kth voxel, which is cubed to

45

obtain the resting volume, rk(t), at any time, t, during the robot’s lifetime.

rk(t) = s3
k k = 1, 2, . . . , 24 (3.1)

The resting lengths may be any real value in the range (0.25, 1.75), inclusive. Note
that the resting volume of an Evo robot does not depend on t, and is thus constant
in ontogenetic time.

Volumetric actuation, a(t) with amplitude u, and period w, takes the following
general form in time.

a(t) = u ∗ sin(2πt/w) (3.2)
Actuation is limited to ±20% and cycles four times per second (u = 0.20, w = 0.25
sec).

However, for smaller resting volumes, the actuation amplitude is limited and ap-
proaches zero (no actuation) as the resting volume goes to its lower bound, 0.253.
This restriction is enforced to prevent opposite sides of a voxel from penetrating each
other, effectively incurring negative volumes, which can lead to simulation instability.
This dampening is applied only where sk < 1 (shrinking voxels) and accomplished
through the following function.

d(sk) =
1 sk ≥ 1

(4sk − 1)/3 sk < 1
(3.3)

Thus d(sk) is zero when sk = 0.25, and is linearly increasing in sk ≤ 1. The true
actuation, ã(t, sk), is calculated by multiplying the unrestricted actuation, a(t), by
the limiting factor, d(sk).

ã(t, sk) = a(t) ∗ d(sk) (3.4)
Actuation is then added to the resting volume to realize the current volume, Vk(t),

of the kth voxel of an Evo robot at time t.

Vk(t) = [sk + ã(t, sk)]3 (3.5)

For Evo-Devo robots, a gene is a pair of voxel lengths (sk0, sk1) corresponding to
the kth voxel’s starting and final resting lengths, respectively. Thus, for a voxel in an
Evo-Devo robot, the resting volume at time t ∈ (0, τ) is calculated as follows.

rk(t) =
[
sk0 + t

τ
(sk1 − sk0)

]3
(3.6)

Where the difference in starting and final scale (sk1 − sk0) determines the slope of
linear development which may be positive (growth) or negative (shrinkage). The

46

current volume of the kth voxel of an Evo-Devo robot is then determined by the
following.

Vk(t) =
[
r

1/3
k (t) + ã

(
t, r

1/3
k (t)

)]3
(3.7)

Hence the starting resting volume, vk0, and final resting volume, vk1, are the current
volumes at t = 0 and t = τ , respectively.

vk0 = Vk(0) = s3
k0

vk1 = Vk(τ) = s3
k1

(3.8)

Note that an Evo gene is a special case of an Evo-Devo gene where sk0 = sk1, or,
equivalently, where vk0 = vk1.

For convenience, let’s define the current total volume of the robot across all 48
voxels as Q(t).

Q(t) = 2
24∑
k=1

Vk(t) (3.9)

We track the y position of the center of mass, y(t), as well as the current total volume,
Q(t), at n discrete intervals within the lifetime of a robot. Fitness, F , is the sum of
the distance traveled in time interval, divided by the average volume in the interval.

F = 2
n∑
t=1

y(t)− y(t− 1)
Q(t) +Q(t− 1) (3.10)

We track y(t) and Q(t) 100 times per second. Since robots are evaluated for eight
seconds, n = 800.

A direct encoding.
This paper differs from previous evolutionary robotics work that used Voxelyze [42–
44] in that we evolve the volumes of a fixed collection of voxels, rather than the
presence/absence of voxels in a bounding region. Another difference is that we do
not employ the CPPN-NEAT evolutionary algorithm [221], but instead use a direct
encoding with bilateral symmetry about the y axis. A comparison of encodings in
our scenario is beyond the scope of this paper. However we noticed that the range
of evolved morphologies here, under our particular settings, was much smaller than
that of previous work which used voxels as building blocks, and that it is easier to
reach extreme volumes for individual voxels using a direct encoding.

Apart from the difference in encoding, this work is by in large consistent with
this previous work. We use the same physical environment as Cheney et al. [42]: a
wide-open flat plain. The material properties of our voxels are also consistent with
the ‘muscle’ voxel type from the palette in this work; although these voxels had a
fixed resting volume of one (sk = 1 for all k).

47

Evolutionary search.
We employ a standard evolutionary algorithm, Age-Fitness-Pareto Optimization (AF-
PO, [204]), which uses the concept of Pareto dominance and an objective of age (in
addition to fitness) intended to promote diversity among candidate designs. For 30
runs, a population of 30 robots is evolved for 2000 generations. Every generation,
the population is first doubled by creating modified copies of each individual in the
population. Next, an additional random individual is injected into the population.
Finally, selection reduces the population down to its original size according to the
two objectives of fitness (maximized) and age (minimized).

The same number of parent voxels are mutated, on average, in both Evo and Evo-
Devo children. Mutations follow a normal distribution (σ = 0.75) and are applied
by first choosing what parameter types to mutate, and then choosing which voxels
to mutate. For Evo robots, we simply visit each voxel (on the positive x side) of the
parent and, with probability 0.5, mutate its single parameter value. For Evo-Devo
parents, we flip a coin for each parameter to be mutated (if neither will be mutated,
flip a final coin to choose one or the other). This results in a 25% chance of mutating
both, and a 37.5% chance of mutating each of the two individual parameters alone.
Then we apply the same mutation process as before in Evo robots: loop through each
voxel of the parent and, with probability 0.5, mutate the selected parameter(s).

An artificially rugged landscape.
We did not fine-tune the mutation hyperparameters (scale and probability), but in-
tentionally chose a relatively high probability of mutation in order to elicit a large
mutational impact in an attempt to render evolutionary search more difficult. This
removes easy to follow gradients in the search space — ‘compressing’ gentle slopes
into abrupt cliffs — which make ‘good designs’ more difficult to find. Any one of
these good solutions then, to a certain extent, become like Hinton & Nowlan’s ‘needle
in a haystack’ [96].

Note that there are other ways to enforce rugged fitness landscapes, and such land-
scapes are naturally occurring in many systems, though our particular task/environ-
ment is not one of them. Future work should investigate these tasks and environments
with a fine-tuned mutation rate.

48

D
e
n

si
ty

Random designs

Evo

Evo-Devo

−10 −5 0 5 10
Vol-normed distance

Figure 3.3: One thousand randomly generated robots for each group. The horizontal axes measure
fitness: volume normalized distance in the positive y direction. The best overall designs are the best
Evo robots since they maintain their good form as they behave. However, most designs are immobile
(mode at zero) and Evo-Devo robots are more likely to move (less mass around zero) since they explore
a continuum of body plans rather than a single static guess.

3.3 Results
In this section we present the results of our experiments2 and indicate statistical
significance under the Mann-Whitney U test where applicable.

Random search.
To get a sense of the evolutionary search space, prior to optimization, we randomly
generated one thousand robots from each group (figure 3.3). The horizontal axes of
figure 3.3 measure the fitness (equation 3.10) of our randomly generated designs. The
top portion of this figure plots the histogram of relative frequencies, using equal bin
sizes between groups. The mode is zero for both groups, meaning that the majority
of designs are immobile.

The best possibility here is to randomly guess a good Evo robot since this good
morphology is utilized for the full 32 actuation cycles. This is why the best random
designs are Evo robots. However, the Evo-Devo distribution contains much less mass
around zero than the Evo distribution. It follows that it is more likely that an Evo-
Devo robot moves at all, if only temporarily, since this only requires some interval of
the many morphologies it sweeps over to be mobile. Also note that while the total

2https://youtu.be/gXf2Chu4L9A directs to a video overview of our experiments.

49

https://youtu.be/gXf2Chu4L9A

0 500 1000 1500 2000
Generation

0

5

10

15

20

25

V
o
l-

n
o
rm

e
d

 d
is

ta
n

ce

a.
Fitness

Evo

Evo-Devo

0

5

10

15

20

25
b.

Frozen midlife

Figure 3.4: For thirty runs, a population of thirty robots is evolved for two thousand generations. (a)
Best of generation fitness for Evo and Evo-Devo robots. (b) The same robots are reevaluated with
development frozen at their midlife morphology. Means are plotted with 95% bootstrapped confidence
intervals.

displacement may be lower in the Evo-Devo case, since these robots ‘travel’ through a
number of different morphologies, they may pass through those which run at a higher
instantaneous speed (but spend less of their lifetime in this morphology).

Evolution.
The results of the evolutionary algorithm are displayed in figure 3.4a. In the earliest
generations, evolution is consistent with random search and the best Evo robots start
off slightly better than the best Evo-Devo robots. However, the best Evo-Devo robots
quickly overtake the best Evo robots. At the end of optimization there is a significant
difference between Evo and Evo-Devo run champions (U = 122, p < 0.001).

We also chose to reevaluate Evo-Devo robots with their development frozen at
their median ontogenetic morphologies (figure 3.4b). For each robot, we measure the
robot’s fitness (equation 3.10) at this midlife morphology with development frozen,
for two seconds. Selection is completely blind to this frozen evaluation. It exists solely
for the purpose of post-evolution analysis, and serves primarily as a sanity check to
make sure Evo-Devo robots are not explicitly utilizing their ability to grow/shrink to

50

−5 0 5 10 15 20 25
Fitness

10

20

30

40

50

60

D
e
ve

lo
p

m
e
n

t
w

in
d

o
w

Figure 3.5: The relationship between the amount of development at the individual level (W) and fitness
(F). The fastest individuals have small developmental windows surrounding a fast body plan.

move faster.
Development appears to inhibit locomotion to some degree as the best morpholo-

gies run slightly faster with development turned off, particularly in earlier generations.
A significant difference, at the 0.001 level, between Evo robots and Evo-Devo robots
with development frozen at midlife, occurs after only 108 generations compared to
255 generations with development enabled. Note that the midlife morphology is not
necessarily the top speed of an Evo-Devo robot. In fact it is almost certainly not
the optimal ontogenetic form since the best body plan may occur at any point in its
continuous ontogeny, including the start and endpoints.

Closing the window.
Once an Evo-Devo robot identifies a good body plan in its ontogenetic sweep, its de-
scendants can gain fitness by ‘suppressing’ development around the good plan through
heterochronic mutations. This can be accomplished by incrementally closing the de-
velopmental window, the interval (sk0, sk1), for each voxel, around the good morphol-
ogy. In the limit, under a fixed environment, this process ends with a decedent born
with the good design from the start and devoid of any developmental at all (sk0 = sk1

51

15

25

35

45

15

25

35

45

15

25

35

45

D
e
ve

lo
p

m
e
n

t
w

in
d

o
w

15

25

35

45

15

25

35

45

85 65 45 25

15

25

35

45

85 65 45 25 85 65 45 25

Ancestor
85 65 45 25 85 65 45 25

Figure 3.6: Closing the window. Total development window trajectories (in phylogeny) of the lineages of
the most fit individuals in each run. Phylogenetic time goes from left to right: from the oldest ancestor
(randomly created) to its most recent decedent, the current run champion.

for all voxels). This phenomenon, best known as the Baldwin Effect, is instrumental
in evolution because natural selection is a hill-climbing process and therefore blind to
needles in a haystack, good designs (local optima) to which no gradient of increased
fitness leads. The developmental sweep, however, alters the search space in which
evolution operates, surrounding the good design by a slope which natural selection
can climb [96].

To investigate the relationship between development and fitness, we add up all of
the voxel-level development windows to form a individual-level summary statistic,W .
We define the total development window, W , as the sum of the absolute difference of
starting and final resting lengths across the robot’s 48 voxels.

W =
48∑
k=1

abs(sk1 − sk0) (3.11)

Overall there is a strong negative correlation between fitness, F , and the total

52

0 5 10 15 20 25
Parent fitness

0

5

10

15

20

25

C
h

il
d

 f
it

n
e
ss

a.
Evo

0 5 10 15 20 25
Parent fitness

0

5

10

15

20

25

C
h

il
d

 f
it

n
e
ss

b.
Evo-Devo

Figure 3.7: Mutation impact: child fitness by parent fitness (vol-normed distance). The diagonal
represents a neutral mutation, equivalent child and parent fitness. Hexagon bins below the diagonal
represent detrimental mutations (child less fit than its parent); bins above the diagonal represent beneficial
mutations (child more fit than its parent).

development window, W , in Evo-Devo robots (figure 3.5). To achieve the highest
fitness values a robot needs to have narrow developmental windows at the voxel level.
However, this statistic doesn’t discriminate between open/closed windows early/late
in evolution. To show what sorts of development window/evolutionary time relation-
ships eventually lead to highly fit individuals, we grab the lineages of only the most
fit individuals at the end of evolutionary time (figure 3.6). In the most fit individuals,
development windows tend to first increase slightly in phylogeny before decreasing
to their minimum, or close nearby. The age objective in AFPO lowers the selection
pressure on younger individuals which allows them to explore, through larger devel-
opmental windows, a larger portion of design space until someone in the population
discovers a locally optimal solution which creates a new selection pressure for de-
scendants with older genetic material to ‘lock in’ or canalize this form with smaller
developmental windows. These results further suggests that development itself is not
optimal, it is only helpful in that it can lead to better optima down the road once
the window is closed.

The effect of mutations.
In addition to the parameter-sweeping nature of its search, developmental time pro-
vides evolution with a simple mechanism for inducing mutations with a range of

53

magnitude of phenotypic impact. The overall mutation impact in our experiments is
conveyed in figure 3.7 through 2D histograms of child and parent fitness. Recall that
a child is created through mutation by each individual (parent) in the current popu-
lation. These plots include the entire evolutionary history of all robots in every run.
There are relatively so few robots with negative fitness that the histograms need not
extend into this region since they contain practically zero density and would appear
completely white.

The diagonal represents equal parent and child fitness, a behaviorally neutral
mutation. Hexagons below the diagonal represent detrimental mutations: lower child
fitness relative to that of its parent. Hexagons above the diagonal represent beneficial
mutations: higher child fitness relative to that of its parent. Mutations are generally
detrimental for both groups, particularly in later generations once evolution has found
a working solution. For Evo robots (figure 3.7a), most if not all of the mass in
the marginal density of child speed is concentrated around zero. This means that
mutations to an Evo robot are almost certain to break the existing parent solution,
rendering a previously mobile design immobile.

The majority of Evo-Devo children, however, are generally concentrated on, or
just below the diagonal in figure 3.7b. This general pattern holds even in later gener-
ations when evolution has found working solutions with high fitness. It follows that
mutations to an Evo-Devo robot may be phenotypically smaller than mutations to
an Evo robot, even though they use the same mutation operator. Furthermore, fig-
ure 3.7b displays a high frequency of mutations with a wide range of magnitude of
phenotypic impact including smaller, low-risk mutations which are useful for refining
mobile designs; as well as a range of larger, higher-risk mutations which occasionally
provide the high-reward of jumping into the neighborhood of a more fit local optima
at a range of distances in the fitness landscape.

Now let’s define the impact of developmental mutations, M , as the relative differ-
ence in child (FC) and parent fitnesses (FP), for positive fitnesses only.

M = FC
FP
− 1; FC , FP > 0 (3.12)

Then the average mutational impact for early-in-the-life mutations (any mutations
that, at least in part, modify initial volumes) is M0 = −0.29. While the average
mutational impact for late-in-the-life mutations (that modify final volumes) is M1 =
−0.10. Although both types of mutations are detrimental on average, later-in-life
mutations are more beneficial (less detrimental) on average (p < 0.001). This makes
sense in a task with dependent time steps since a child created through a late-in-life
mutation will at least start out with the same behavior as its parent and then slowly
diverge over its life. Whereas an early-in-life mutation creates a behavioral change at
t = 0.

54

1 24 48
Avg Num Voxels Mutated

10

14

18

22

26

F
it

n
e
ss

Mutation rate sweep

Evo

Evo-Devo

Figure 3.8: A hyperparameter sweep of mutation rate: a probability dictating the average number of
voxels mutated in an individual robot.

The necessity of development.
In attempting to induce a needle-in-the-haystack fitness landscape, as a proof of
concept, we intentionally set the mutation rate and scale fairly high. A low-resolution
hyperparameter sweep (figure 3.8) indicates that the efficacy of ballistic development
is indeed dependent on the mutation rate: there is no significant difference between
Evo and Evo-Devo at either very low or very high rates. Higher fitness values are
obtained through smaller mutation rates, which raises the question: Is development
useful only in its ability to decrease the phenotypic impact of mutations? If so we
might prefer Evo robots (with a low mutation rate) since they reside in a smaller
search space. But how low should the mutation rate be? It may in fact be difficult
to know a priori which mutation rate is optimal. It is also important to recognize
that while we use mutation rate here to artificially tune the ruggedness of the fitness
landscape, in a naturally rugged landscape we presumably would not have direct
access to such an easily tunable parameter to ‘undo’, or smooth-out the ruggedness.

Moreover, we know that there exist contexts in which developmental flexibility can
permit the local speeding up of the basic, slow process of natural selection, thanks to
the Baldwin Effect [62]. Our new data suggests that even open-loop morphological
change increases the probability of randomly finding (and subsequently ‘locking in’)
a mobile design (figure 3.3), and that this probability is increasing in the amount
of change (figure 3.6) even though ballistic development and fitness are inversely
correlated (figure 3.5). The staticity of Evo robots prevents this local speed-up which
can place them at a significant disadvantage in rugged fitness landscapes.

55

3.4 Conclusion
In this paper we introduced a minimal yet embodied model of development in order
to isolate the intrinsic effect of morphological change in ontogenetic time, without
the confounding effects of environmental mediation. Even our simple developmen-
tal model naturally provides a continuum in terms of the magnitude of mutational
phenotypic impact, from the very large (caused by early-in-life developmental muta-
tions) to the very small (caused by late-in-life mutations). We predict that, because
of this, such a developmental system will be more evolvable than an equivalent non-
developmental system because the latter lacks this inherent spectrum in the magni-
tude of mutational impacts.

We showed that even without any sensory feedback, open-loop development can
confer evolvability because it allows evolution to sweep over a much larger range of
body plans. Our results suggest that widening the span of the developmental sweep
increases the likelihood of stumbling across locally optimal designs otherwise invisible
to natural selection, which automatically creates a new selection pressure to canalize
development around this good form. This implies that species with completely blind
developmental plasticity tend to evolve faster and more ‘clearsightedly’ than those
without it.

Future work will involve closing the developmental feedback loop with as little
additional machinery as possible to determine when and how such added complexity
increases evolvability.

56

Chapter 4

Shape and Configuration

Appeared as:
S. Kriegman et al., How morphological development can guide evolution. Scientific
Reports 8 (1), 1–10 (2018).

Abstract:
Organisms result from adaptive processes interacting across different time scales. One
such interaction is that between development and evolution. Models have shown that
development sweeps over several traits in a single agent, sometimes exposing promis-
ing static traits. Subsequent evolution can then canalize these rare traits. Thus,
development can, under the right conditions, increase evolvability. Here, we report
on a previously unknown phenomenon when embodied agents are allowed to develop
and evolve: Evolution discovers body plans robust to control changes, these body
plans become genetically assimilated, yet controllers for these agents are not assimi-
lated. This allows evolution to continue climbing fitness gradients by tinkering with
the developmental programs for controllers within these permissive body plans. This
exposes a previously unknown detail about the Baldwin effect: instead of all useful
traits becoming genetically assimilated, only traits that render the agent robust to
changes in other traits become assimilated. We refer to this as differential canaliza-
tion. This finding also has implications for the evolutionary design of artificial and
embodied agents such as robots: robots robust to internal changes in their controllers
may also be robust to external changes in their environment, such as transferal from
simulation to reality or deployment in novel environments.

4.1 Introduction
The shape of life changes on many different time scales. From generation to genera-
tion, populations gradually increase in complexity and relative competency. At the
individual level, organisms grow from a single-celled egg and exhibit extreme postna-
tal change as they interact with the outside world during their lifetimes. At a faster

57

https://www.nature.com/articles/s41598-018-31868-7

time scale still, organisms behave such as to survive and reproduce.
Many organisms manifest different traits as they interact with their environment.

It seems wasteful not to utilize this extra exploration to speed the evolutionary search
for good genotypes. However, to communicate information from these useful but tem-
porary traits to the genotype requires inverting the generally very complex, nonlinear
and stochastic mapping from DNA to phenotype. Inverting such a function would
be exceedingly difficult to compute. Organisms can, however, pass on their particu-
lar capacity to acquire certain characteristics. Thus phenotypic plasticity can affect
the direction and rate of evolutionary change by influencing selection pressures. Al-
though this phenomenon was originally described by Baldwin [12], Morgan [161] and
Waddington [244], among others, it has become known as ‘the Baldwin effect’. In
Baldwin’s words: ‘the most plastic individuals will be preserved to do the advanta-
geous things for which their variations show them to be the most fit, and the next
generation will show an emphasis of just this direction in its variations’ [12]. In a
fixed environment, when the ‘advantageous thing’ to do is to stay the same, selec-
tion can favor genetic variations which more easily, reliably, or quickly produce these
traits. This can lead to the genetic determination of a character which in previous
generations needed to be developed or learned.

Thirty years ago, Hinton and Nowlan [96] provided a simple computational model
of the Baldwin effect that clearly demonstrated how phenotypic plasticity could, under
certain conditions, speed evolutionary search without communication to the genotype.
They considered the evolution of a bitstring that is only of value when perfectly
matching a predefined target string. The search space therefore has a single spike of
high fitness with no slope leading to the summit. In such a space, evolution is no
better than random search.

Hinton and Nowlan then allowed part of the string to randomly change at an
additional (and faster) developmental time scale. When the genetically specified
(nonplastic) portion of the string is correct, there is a chance of discovering the
remaining portion in development. The speed at which such individuals tend to find
the good string will be proportional to the number of genetically determined bits.
When the target string is found, development stops and the individual is rewarded for
the amount of remaining developmental time. This has the effect of creating a gradient
of increasing fitness surrounding the correct specification that natural selection can
easily climb by incrementally assimilating more correct bits to the genotype.

Hinton and Nowlan imagined the bitstring as specifying the connections of a neu-
ral network in a very harsh environment. We are also interested in this interaction
of subsystems unfolding at different time scales, but consider an embodied agent sit-
uated in a physically-realistic environment rather than an abstract control system.
This distinction is important as it grounds our hypotheses in the constraints and op-
portunities afforded by the physical world. It also allows us to investigate how changes

58

in morphology and control might differentially affect the direction or rate of evolu-
tionary search. More specifically, it exposes the previously unknown phenomenon of
differential canalization reported here.

Inspired by Hinton and Nowlan, Floreano and Mondada [77] explored the inter-
action between learning and evolution in mobile robots with a fixed body plan but
plastic neural control structure. They noted that the acquisition of stable behavior in
ontogeny did not correspond to stability (no further change) of individual synapses,
but rather was regulated by continuously changing synapses which were dynamically
stable. In other words, agents exploited this ontogenetic change for behavior, and
this prevented its canalization. In this paper, we structure development in a way
that restricts its exploitation for behavior and thus promotes the canalization of high
performing static phenotypes. Also, the robot’s body plan was fixed in Floreano
and Mondada’s experiments[77], whereas in the work reported here, evolution and
development may modify body plans.

Several models that specifically address morphological development of embodied
agents have been reported in the literature [29, 60, 64, 68, 154]. However, the rela-
tionship between morphological development and evolvability is seldom investigated
in such models. Moreover, there are exceedingly few cases that considered postnatal
change to the body plan of an agent (its resting structural form) as it behaves and
interacts with the environment through physiological functioning (at a faster time
scale).

We are only aware of four cases reported in the literature in which a simulated
robot’s body was allowed to change while it was behaving. In the first two cases [114,
243], it was not clear whether this ontogenetic morphological change facilitated the
evolution of behavior. Later, Bongard [28] demonstrated how such change could lead
to a form of self-scaffolding that smoothed the fitness landscape and thus increased
evolvability. This ontogenetic change also exposed evolution to a wider range of
sensor-motor contingencies, which increased robustness to novel environments. More
recently, Kriegman et al. [121] showed how development can sweep over a series of
body plans in a single agent, and subsequent heterochronic mutations canalize the
most promising body plan in more morphologically-static descendants.

We are not aware of any cases reported in the literature to date in which a sim-
ulated robot’s body and control are simultaneously allowed to change while it is
behaving. In this paper, we investigate such change in the morphologies and con-
trollers of soft robots as they are evolved for coordinated action in a simulated 3D
environment. By morphology we mean the current state of a robot’s shape, which is
slowly changed over the course of its lifetime by a developmental process. We distin-
guish this from the controller, which sends propagating waves of actuation throughout
the individual, which also affects the instantaneous shape of the robot but to a much
smaller degree. We here refer to these two processes as ‘morphology’ and ‘control’.

59

Figure 4.1: Modeling development. An evolved soft robot changes its shape during its lifetime (post-
natal development), from a walking quadruped into a rolling form. Evolution dictates how a robot’s
morphology develops by setting each voxel’s initial (`k) and final (`∗k) resting length. The length of a
single voxel k is plotted to illustrate its (slower) growth and (faster) actuation processes. Voxel color
indicates the current length of that cell: the smallest voxels are blue, medium sized voxels are green,
and the largest voxels are red. As robots develop and interact with a physically realistic environment,
they generate heterogeneous behavior in terms of instantaneous velocity (bottom arrows). Soft robot
evolution, development and physiological functioning can be seen in Supplementary Video S1.

As both processes change the shape, and thus behavior, of the robot, this distinction
is somewhat arbitrary. However, the central claim of this paper, which is that some
traits become canalized while others do not, is not reliant on this distinction.

We use soft robots because they provide many more degrees of morphological free-
dom compared to traditional robots composed of rigid links connected by rotary or
linear actuators. This flexibility allows soft robots to accomplish tasks that would be
otherwise impossible for their rigid-bodied counterparts, such as squeezing through
small apertures [44] or continuously morphing to meet different tasks. Recent ad-
vancements in materials science are enabling the fabrication of 3D-printed muscles
[155] and nervous systems [247]. However, there are several challenges to the field
of soft robotics, including an overall lack of design intuition: What should a robot
with nearly unbounded morphological possibility look like, and how can it be con-
trolled? Controllability often depends on precision actuation and feedback authority,
but these properties are difficult to maintain in soft materials in which motion in one
part of the robot can propagate in unanticipated ways throughout its body [139].

We present here a minimally complex but embodied model of morphological and

60

https://youtu.be/Ee2sU-AZWC4

Figure 4.2: Evolved behavior. Each row depicts a different evolved robot moving from left to right.
Voxels in this figure are colored by the amount of subsequent morphological development remaining at
that cell: blue indicates shrinking voxels (`k > `∗k), red indicates growing voxels (`k < `∗k), green indicates
little to no change either way (`k

∼= `∗k). (A) An evolved trotting soft quadruped with a two-beat gait
synchronizing diagonal pairs of legs. (B) A galloping adult robot which goes fully airborne mid-gait. (C)
A galloping juvenile robot which develops into a rolling adult form. (D) A rolling juvenile robot at 10
points in ontogeny immediately after birth. Arrows indicate the general directionality of movement, but
this is more precisely captured by Supplementary Video S1.

neurological development. This new model represents an alternative approach to
the challenging problem of soft robot design and presents an in silico testbed for
hypotheses about evolving and developing embodied systems. This model led to the
discovery of differential canalization and how it can increase evolvability.

4.2 Results
We consider a locomotion task, over flat terrain, for soft robots composed of a 4×4×3
grid of voxels (Fig. 4.1). Robots are evaluated for 40 actuation cycles at 4 Hz,
yielding a lifetime of ten seconds. Fitness is taken to be distance traveled measured
in undeformed body lengths (four unit voxels, i.e. 4 cm). Example robots are shown
in Figures 4.1 and 4.2, and Supplementary Video S1.

All experiments were performed in the open-source soft-body physics simulator
Voxelyze [95]. Voxelyze simulates soft materials using two elements: particles and
beams. A particle is a point mass with rotational inertia. A spring-like beam (with
translational and rotational stiffness) connects two adjacent particles. Each particle
is connected to at most six neighbors (above, below, front, back, left, and right), on a

61

https://youtu.be/Ee2sU-AZWC4
https://youtu.be/Ee2sU-AZWC4

Figure 4.3: Evolvability and development. Morphological development drastically increases evolvability
(A), even when development is manually removed from the evolved systems (the run champions) by setting
the final parameter values equal to their starting values (`∗k = `k and φ∗k = φk), in each voxel (B). Median
fitness is plotted with 95% bootstrapped confidence intervals for three treatments: evolving but non-
developmental robots (Evo), evolving and developing robots (Evo-Devo), and evolving and developing
robots evaluated at the end of evolution with their development removed (Evo-Devo removed). Fitness
of just the final, evolved populations (at generation 10000) are plotted in B.

cartesian grid. Local material properties are stored at particles and averaged across
shared beams. Finally, a voxel mesh is drawn around each particle for visualization,
such that adjacent voxels touch at the center of their shared beam. More details
about how this is actually implemented are given by Hiller and Lipson [95].

The morphology of a robot is given by the resting (beam) length stored at each
voxel (Fig. 4.1). However the shape and volume of each voxel is changed by external
forces from the environment and internal forces via behavior. The morphology of a
robot is denoted by the 4 × 4 × 3 = 48-element vector `, where each element is the
resting length stored at that voxel (with possible values within 1.0 ± 0.75 cm). Like
most animals, our robots are bilaterally symmetrical. We built this constraint into
our robots because bilateral symmetry is known to help with forward locomotion [87].
The lefthand 2×4×3 = 24 resting voxel lengths are reflected on the other, righthand
side of the midsagittal line, yielding 24 independent resting lengths.

The controller, however, is not constrained to be symmetrical since many behav-
iors, even for symmetric morphologies, consist of asymmetric gaits, and is given by
the phase offset of each voxel from a global oscillating signal with an amplitude of
0.14 cm. The controller is denoted by the 48-element vector φ, where each element is
the phase offset of that voxel (with possible values within 0± π/2).

We investigated the impact of development in this model by comparing two exper-
imental variants: Evo and Evo-Devo (schematized in Supplementary Fig. 4.8). The
control treatment, Evo, lacks development and therefore maintains a fixed morphol-

62

Figure 4.4: Differential canalization. Developmental windows (i.e. the total lifetime developmental
change) for morphology, WL (see Equation 4.5), and controller, WΦ (see Equation 4.6), alongside fitness
F . (A) Three representative lineages taken from Supplementary Fig. 4.7, which displays the lineages
of all 30 Evo-Devo run champions. Evolutionary time T moves from the oldest ancestor (left) to the
run champion (right). A general trend emerges wherein lineages initially increase their morphological
development in T (rising red curves) and subsequently decrease morphological development to almost
zero (falling red curves). Five of the 30 evolutionary trials, annotated by ∗, fell into a local optima.
(B) Median fitness as a function of morphology and controller development windows (WL, WΦ), for all
Evo-Devo designs evaluated. Overall, the fastest designs tend to have small amounts of morphological
development, but are free to explore alternative control policies.

ogy and control policy in a robot as it behaves over its lifetime. Two parameters per
voxel are sufficient to specify an evolved robot at any time t in its lifetime: its mor-
phology `k, and controller φk. An evolutionary algorithm optimizes 24 morphological
and 48 control parameters.

The experimental treatment Evo-Devo evolves a developmental program rather
than a static phenotype (Fig. 4.1). For each parameter in an Evo robot, an Evo-Devo
robot has two: its starting and final value. The evolutionary algorithm associated with
the Evo-Devo treatment thus optimizes 48 morphological and 96 control parameters.
The morphology and controller of the k-th voxel change linearly from starting to final
values, throughout the lifetime of a developing robot. The endpoint parameters are
denoted by asterisks: the controller develops from φ to φ∗, the morphology develops
from ` to `∗. The starting and final points of development are predetermined by
a genome which in turn fixes the direction (compression or expansion) and rate of
change for each voxel. Development is thus ballistic in nature rather than adaptive,
as it cannot be influenced by the environment (Equation 4.1).

For both treatments we conducted 30 independent evolutionary trials. At the end
of evolutionary optimization, the non-developmental robots (Evo) tend to move on

63

Figure 4.5: Sensitivity to morphological and control mutations. Ten random walks were taken from
each run champion. (A) Successive control mutations to the Evo and Evo-Devo run champions. (B)
The previous Evo-Devo results separately for fast and slow design types. (C) Successive morphological
mutations to the Evo and Evo-Devo run champions. (D) The previous Evo-Devo results separately for
fast and slow design types. Medians plotted with 99% confidence intervals. The faster Evo-Devo robots
tend to possess body plans that are robust to control mutations.

average with a speed of 10 body lengths in 10 seconds, or 1 length/sec. The evolved
and developing robots (Evo-Devo) tend to move at over 5 lengths/sec (Fig. 4.3A). To
ensure evolved and developing robots are not exploiting some unfair advantage con-
ferred by changing body plans and control policies unavailable to non-developmental
robots, we manually remove their development by setting `∗ = ` and φ∗ = φ, which
fixes the structure of their morphologies and controllers at birth (t = 0) (Equation
4.1). That is to say, we convert the evolved Evo-Devo robots into Evo robots (Equa-
tion 4.1 reduces to Equation 4.2). The resulting reduced robots suffer only a slight
(and statistically non-significant) decrease in median speed and still tend to be almost
five times faster than the systems evolved without development (Fig. 4.3B, treatment
‘Evo-Devo removed’). Ballistic development is therefore beneficial for search but does
not provide a behavioral advantage in this task environment.

To investigate this apparent search advantage, we trace development and fitness
across the 30 lineages which produced a ‘run champion’: the robot with highest fitness
at the termination of a given evolutionary trial (Supplementary Fig. 4.7).We measure
the amount of ballistic change in each robot—its ‘ballistic plasticity’—by a statistic

64

Figure 4.6: Late onset discoveries. Ontogenetic time before the discovery of rolling over, taken from the
lineages of the best robot from each of the 25 Evo-Devo trials that produced a rolling design. Median time
to discovery, with 95% C.I.s, for (A) the lineage from the most distant ancestor (T = 0) to more recent
descendants, and (B) the first ancestor to roll over compared to the final run champion. Rolling over is
measured from the first time step the top of the robot touches the ground, rather than after completely
rolling over. The first ancestors to roll over tend to do so at the end of their lives, their descendants tend
to roll sooner in life, and the final run champions all begin rolling immediately at birth. These results are
a consequence of dependent time steps: because mutational changes affect all downstream steps, their
phenotypic impact is amplified in all but the terminal stages of development. Thus, late onset changes
can provide exploration in the search space without breaking rest-of-life functionality, and subsequent
evolution can gradually assimilate this trait to the start of development.

we call the developmental window. The developmental window is defined separately
for morphology (Equation 4.5) and control (Equation 4.6) as the absolute difference
in starting and final values summed across the robot and divided by the total amount
of possible development, such that 0 and 1 indicate no and maximal developmental
change, respectively. Evo robots by definition have development windows of zero, as
do Evo-Devo robots that have had development manually removed. An Evo-Devo
robot with a small developmental window has thus become canalized [244].

In terms of fitness, there were two observed basins of attraction in average velocity:
a slower design type which either trots or gallops at a speed of less than 1 length/sec
(Fig. 4.2A,B and Fig. 4.4A∗), and a faster design type that rolls at 5-6 lengths/sec
(Fig. 4.2C). After ten thousand generations, 25 out of a total of 30 Evo-Devo trials
(83.3%) find the faster design, compared to just 6 out of 30 Evo trials (20%).

Differential canalization.
Modular systems are more evolvable than non-modular systems because they allow
evolution to improve one subsystem without disrupting others [138, 245]. Modularity
may be a property of the way a system is built, or it may be an evolved property.
The robots evolved here are by definition modular because the genes which affect
morphology are independent of those which affect its control. However the more

65

successful Evo-Devo lineages evolved an additional form of modularity, which we
term differential canalization: Some initially developmentally plastic traits become
integrated and canalized, while other traits remain plastic.

In the successful Evo-Devo trials, morphological traits were canalized while control
traits were not. Evidence for this is provided in Supplementary Fig. 4.7,which is sum-
marized by Fig. 4.4A. Trajectories of controller development (green curves) do not
follow any discernible pattern in phylogenetic time, and appear upon visual inspection
to be consistent with a random walk or genetic drift. The trajectories of morpholog-
ical development (red curves), however, follow a consistent pattern. The magnitude
of morphological development increases slightly, but significantly (p < 0.001), before
decreasing all the way to the most recent descendant, which is the most fit robot from
that trial (the run champion). Run champions tend to have much less morphological
development than their most distant ancestor (p < 0.001), but there is not a signif-
icant difference between champion and ancestral controller windows. Furthermore,
this pattern tends to correlate with high fitness: in trials in which this pattern did
not appear (runs 6, 8, 16-18), fitness did not increase appreciably over evolutionary
time.

This process within the lineages of the run champions is consistent with a more
general correlation found in all designs explored during optimization across all runs:
Individuals with the highest fitness values tend to have very small amounts of mor-
phological development, while their control policies are free to develop (Fig. 4.4B).
However, despite the fact that morphological development tends to be canalized in
the most fit individuals, it cannot simply be discarded as the non-developmental sys-
tems have by definition small morphological windows, and small controller windows,
but also low fitness.

To test the sensitivity of the evolved morphologies to changes in their control
policies, we applied a random series of control mutations to the Evo and Evo-Devo
run champions from each evolutionary trial. For each run champion, we perform
1000 subsequent random controller mutations that build upon each other in series (a
Brownian trajectory in the space of controllers)—and repeat this process ten times
for each run champion, each with a unique random seed. It was found that optimized
Evo-Devo robots tend to possess body plans that are much more robust to control
mutations than those of Evo robots (Fig. 4.5A). The first control mutation to op-
timized Evo robots tends to immediately render them immobile, whereas optimized
Evo-Devo robots tend to retain most of their functionality even after 1000 succes-
sive random changes to their controllers. Within Evo-Devo designs, the functionality
of the 25 fast designs are minimally affected by changes to their control, whereas
the five slow designs also tend to break after the first control mutation (Fig. 4.5B).
Thus it can be concluded that these five robots are non-modular: their non-canalized
morphologies evolved a strong dependency on their controllers. The Evo robots are

66

similarly non-modular: they are brittle to control mutations.
To test the sensitivity of the evolved controllers to changes in their morphologies,

we applied the same procedure described in the previous paragraph but with random
morphological mutations rather than control mutations. It was found that both de-
velopmental and non-developmental systems tend to evolve controllers that are very
sensitive to morphological mutations (Fig. 4.5C). These findings are consistent with
those of Cheney et al. [46], who also reported that robots were more sensitive to
changes in their morphology than in their controllers. Here, the first few morpholog-
ical mutations to optimized robots, in both treatments, tend to immediately render
them immobile. Within Evo-Devo design types, neither of which canalized devel-
opment in their controllers (Supplementary Fig. 4.7,both the fast and slow designs
possess controllers sensitive to changes in their morphologies (Fig. 4.5D). Thus it can
be concluded that the non-canalized controllers evolved a strong dependency on their
morphologies. Therefore the only trait to be successfully canalized was also the only
trait that rendered the agent robust to changes in other traits.

Heterochrony in morphological development.
The evolutionary algorithm can rapidly discover an actuation pattern that elicits
a very small amount of forward movement in these soft robots regardless of the
morphology. There is then an incremental path of increasing locomotion speed that
natural selection can climb by gradually growing legs to reduce the surface area
touching the floor and thus friction, and simultaneously refining controller actuation
patterns to better match and exploit the morphology (Fig. 4.2A,B).

There is, however, a vastly superior design partially hidden from natural selection—
a ‘needle in the haystack’, to use Hinton and Nowlan’s metaphor [96]. On flat terrain,
rolling can be much faster and more efficient than walking, but finding such a design
is difficult because the fitness landscape is deceptive. Rolling over once is much less
likely to occur in a random individual than shuffling forwards slightly. And as a popu-
lation continues to refine walking morphologies and gaits, lineages containing rocking
individuals which are close to rolling over, or roll over just once, do not survive long
enough to eventually produce a true rolling descendant.

Development can alter the search space evolution operates in because individuals
sweep over a continuum of phenotypes, with different velocities, rather than single
static phenotype that travels at a constant speed (Supplementary Fig. 4.8E,J).The
lineages which ultimately evolved the faster rolling design initially increased their mor-
phological plasticity in phylogenetic time as evidenced by the initial upward trends in
the red curves in Supplementary Fig. 4.7(summarized by Fig. 4.4A) which contain a
statistically significant difference between their starting and maximum developmental
window sizes (p < 0.001). This exposes evolution to a wider range of body plans and

67

thus increases the chance of randomly rolling at least once at some point during the
evaluation period.

The peak of morphological plasticity in Supplementary Fig. 4.7(summarized by
Fig. 4.4A) generally lines up with the start of an increasing trend in fitness (blue
curves) and marks the onset of differential canalization. Rolling just once allows
an individual to move further (1 body length) than some early walking behaviors
but they incur the fitness penalty of having fallen over and thus not being able to
subsequently walk for the rest of the trial. Therefore this tends to happen at the very
end of ontogeny (Fig. 4.6), as individuals evolve to ‘dive’ in the last few time steps
of the simulation of their behavior, thus incurring an additional increase of fitness
over their parent, which does not exhibit this behavior. Since more rolling incurs
more fitness than less rolling, a form of progenesis occurs as heterochronic mutations
move `k closer to `∗k, for each voxel. This gradually earlifies rolling from a late onset
behavior to one that arises increasing earlier in ontogeny (Supplementary Video S1).
As more individuals in the population discover and earlify this rolling behavior, the
competition stiffens until eventually individuals which are not born rolling from the
start are not fast enough to compete (Fig. 4.2C,D).

Generality of results.
For the results above, as in nature [143], the mutation rate of each voxel was left
under evolutionary control (self-adaptation). In an effort to assess the generality of
our results, we replicated the experiment described above for various fixed mutation
rates (Supplementary Fig. 4.9).Without development, as in Hinton and Nowlan’s
case[96], the search space has a single spike of high fitness. One can not do better
than random search in such a space. At the highest mutation rate, optimizing Evo
morphologies reduces to random search, and this is the only mutation rate where
Evo does not require significantly more generations than Evo-Devo to find the faster
design. This can be observed in Supplementary Fig. 4.9 by comparing the generation
at which the slopes of the fitness curves increase dramatically. However, the best
two treatments, as measured by the highest median speed at the end of optimization,
have development, and the robots they produced are significantly faster than those
produced by random search (Evo with the highest mutation rate) (p < 0.01).

To further test the sensitivity of our results to the various settings of our particular
system, we transcribed the main experiment for a different class of morphologies (rigid
bodies) and controllers (neural networks). Details are provided in Supplementary Fig.
4.11 and Supplementary Methods. The results of this test indicate that differential
canalization exists elsewhere, but it does not always increase evolvability.

68

https://youtu.be/Ee2sU-AZWC4

4.3 Discussion
In these experiments, the intersection of two time scales—slow linear development and
rapid oscillatory actuation, as from a central pattern generator—generates positive
and negative feedback in terms of instantaneous velocity: the robot speeds up and
slows down during various points in its lifetime (Supplementary Fig. 4.8J).Prior to
canalization, unless all of the phenotypes swept over by an individual in development
keep the robot motionless, there will be intervals of relatively superior and inferior
performance. Evolution can thus improve overall fitness in a descendant by length-
ening the time intervals containing superior phenotypes and reducing the intervals of
inferior phenotypes. However, this is only possible if such mutations exist.

We have found here that such mutations do exist in cases where evolutionary
changes to one trait do not disrupt the successful behavior contributed by other
traits. For example, robots that exhibited the locally optimal trotting behavior (Fig.
4.2A) exhibited a tight coupling between morphology and control, and thus evolution
was unable to canalize development in either one, since mutations to one subsystem
tended to disrupt the other. Brief ontogenetic periods of rolling behavior (Fig. 4.2C),
on the other hand, could be temporally extended by evolution through canalization
of the morphology alone (Fig. 4.2D), since these morphologies are generally robust to
the pattern of actuation. The key observation here is that only phenotypic traits that
render the agent robust to changes in other traits become assimilated, a phenomenon
we term differential canalization.

This insight was exposed by modeling the development of simulated robots as
they interacted with a physically realistic environment. Differential canalization may
be possible in disembodied agents as well, if they conform to appropriate conditions
described in Supplementary Discussion.

This finding of differential canalization has important implications for the evolu-
tionary design of artificial and embodied agents such as robots. Computational and
engineered systems generally maintain a fixed form as they behave and are evaluated.
However, these systems are also extremely brittle when confronted with slight changes
in their internal structure, such as damage, or in their external environment such as
moving onto a new terrain [27, 37, 82]. Indeed, a perennial problem in robotics and
AI is finding general solutions which perform well in novel environments [117, 170].
Our results demonstrate how incorporating morphological development in the op-
timization of robots can reveal, through differential canalization, characters which
are robust to internal changes. Robots that are robust to internal changes in their
controllers may also be robust to external changes in their environment [28]. Thus,
allowing robots to change their structure as they behave might facilitate evolutionary
improvement of their descendants, even if these robots will be deployed with static
phenotypes or in relatively unchanging environments.

69

These results are particularly important for the nascent field of soft robotics in
which engineers cannot as easily presuppose a robot’s body plan and optimize con-
trollers for it because designing such machines manually is unintuitive [139, 188].
Our approach addresses this challenge, because differential canalization provides a
mechanism whereby static yet robust soft robot morphologies may be automatically
discovered using evolutionary algorithms for a given task environment. Furthermore,
future soft robots could potentially alter their shape to best match the current task
by selecting from previously trained and canalized forms. This change might oc-
cur pneumatically, as in Shepherd et al. [210], or it could modulate other material
properties such as stiffness (e.g. using a muscular hydrostat).

We have shown that for canalization to occur in our developmental model, some
form of paedomorphosis must also occur. However, there are at least two distinct
methods by which such heterochrony can proceed: progenesis and neoteny. Progene-
sis could occur through mutations which move initial parameter values (`, φ) toward
their final values (`∗, φ∗). Neoteny could instead occur through mutations which move
final values (`∗, φ∗) toward their initial values (`, φ). Although a superior phenotype
can materialize anywhere along the ontogenetic timeline, late onset mutations are
less likely to be deleterious than early onset mutations. This is because our devel-
opmental model is linear in terms of process, and interfering with any step affects
all temporally-downstream steps. Since the probability of a mutation being benefi-
cial is inversely proportional to its phenotypic magnitude [76], mutational changes in
the terminal stages of development require the smallest change to the developmen-
tal program. Hence, late-onset discoveries of superior traits are more likely to occur
without breaking functionality at other points in ontogeny, and these traits can be-
come canalized by evolution through progenesis: mutations which reduce the amount
of ontogenetic time prior to realizing the superior trait (by moving ` → `∗ and/or
φ → φ∗). Indeed progenesis was observed most often in our trials (Fig. 4.6): late
onset mutations which transform a walking robot into a rolling one are discovered by
the evolutionary process, and are then moved back toward the birth of the robots’
descendants through subsequent mutations.

Finally, we would like to note the observed phenomenon of increased plastic-
ity prior to genetic assimilation. Models of the Baldwin effect usually assume that
phenotypic plasticity itself does not evolve, although it has been shown how major
changes in the environment can select for increased plasticity in a character that is ini-
tially canalized [128]. In our experiments however, there is no environmental change.
There is also a related concept known as ‘sensitive periods’ of development in which
an organism’s phenotype is more responsive to experience [15]. Despite great interest
in sensitive periods, the adaptive reasons why they have evolved are unclear [71]. In
our model, increasing the amount of morphological development increases the chance
of capturing an advantageous static phenotype, which can then be canalized, once

70

found. However, a phenotype will not realize the globally optimal solution by simply
maximizing development. This would merely lengthen the line on which development
unfolds in phenotypic hyperspace (n-dimensional real space).

The developmental model described herein is intentionally minimalistic in order
to isolate the effect of morphological and neurological change in the evolutionary
search for embodied agents. The simplifying assumptions necessary to do so make
it difficult to assess the biological implications. For example, we model development
as an open loop process and thus ignore environmental queues and sensory feedback
[157, 219]. We also disregard the costs and constraints of phenotypic plasticity [165,
218]. By removing these confounding factors, we hope these results will help generate
novel hypotheses about morphological development, heterochrony, modularity and
evolvability in biological systems.

4.4 Methods

Ballistic development.
Ballistic development B(t) is simply a linear function from a starting value a to a
final value b, in ontogenetic time t ∈ (0, τ), thus:

B(t) = a+ t(b− a)
τ

. (4.1)

For Evo robots, a = b, hence:
B(t) = a, (4.2)

which is just a constant value in ontogenetic time.
Because a and b are constants set by the genotype and τ = 10 (sec) is a fixed hy-

perparameter, development is predetermined, monotonic and irreversible—in a word:
ballistic.

Current length.
For smaller voxels, it is necessary to implement damping into their actuation to avoid
simulation instability. Actuation amplitude is limited by a linear damping factor
ξ(x) = min{1, (4x−1)/3}, which only affects voxels with resting length less than one
centimeter, and approaches zero (no actuation) as the resting length goes to its lower
bound of 0.25 cm.

Actuation of the k-th voxel ψk(t) therefore depends on the starting and final phase
offsets (φk, φ∗k) for relative displacement, and on the starting and final resting lengths

71

(`k, `∗k) for amplitude. With maximum amplitude A = 0.14 cm and a fixed frequency
f = 4 Hz, we have:

ψk(t) = A · sin
[
2πft+ φk + t(φ∗k − φk)

τ

]
· ξ
[
`k + t(`∗k − `k)

τ

]
(4.3)

The current length of the k-th voxel at time t, denoted by Lk(t), is the resting length
plus the offset and damped signal ψk(t).

Lk(t) = `k + t(`∗k − `k)
τ

+ ψk(t) (4.4)

Current length is broken down into its constituent parts for a single voxel, under each
treatment, in Supplementary Fig. 4.8.

Evolutionary algorithm.
We employed a standard evolutionary algorithm, Age-Fitness-Pareto Optimization
[204], which uses the concept of Pareto dominance and an objective of age (in ad-
dition to fitness) intended to promote diversity among candidate designs. A single
evolutionary trial maintains a population of thirty robots, for ten thousand genera-
tions. Every generation, the population is first doubled by creating modified copies
of each individual in the population. The age of each individual is then incremented
by one. Next, an additional random individual (with age zero) is injected into the
population (which now consists of 61 robots). Finally, selection reduces the popula-
tion down to its original size (30 robots) according to the two objectives of fitness
(maximized) and age (minimized).

We performed the above procedure thirty times to produce thirty independent
evolutionary trials. That the number of trials is the same as the population size
within each trial is an admittedly confusing coincidence.

The mutation rate is also evolved for each voxel, independently, and slightly mod-
ified every time a genotype is copied from parent to child. These 48 independent
mutation rates are initialized such that only a single voxel is mutated on average.
Mutations follow a normal distribution (σ` = 0.75 cm; σφ = π/2) and are applied
by first selecting what parameter types to mutate (φk, φ∗k, `k, `∗k), and then choosing,
for each parameter separately, which voxels to mutate. In Supplemental Materials we
provide exact derivations of the expected genotypic impact of mutations, in terms of
the proportions of voxels and parameters modified, for a given fixed mutation rate λ.
There is a negligible difference between Evo and Evo-Devo in terms of the expected
number of parent voxels modified during mutation (Supplementary Fig. 4.10).

72

Developmental windows.
The amount of development in a particular voxel can range from zero (in the case
that starting and final values are equal) to 1.5 cm for the morphology (which ranges
from 0.25 cm to 1.75 cm) and π for the controller (which ranges from −π/2 to π/2).
The morphological development window, WL, is the sum of the absolute difference
of starting and final resting lengths across the robot’s 48 voxels, divided by the total
amount of possible morphological development.

WL = 1
48(1.5)

48∑
k=1
|`∗k − `k| (4.5)

The controller development window, WΦ, is the sum of the absolute difference of
starting and final phase offsets across the robot’s 48 voxels, divided by the total
amount of possible controller development.

WΦ = 1
48π

48∑
k=1
|φ∗k − φk| (4.6)

Statistical hypothesis testing.
We used the Mann-Whitney U test to calculate the p-values reported in this paper.

Data availability.
github.com/skriegman/how-devo-can-guide-evo contains the source code nec-
essary for reproducing the results reported in this paper.

Supplementary Video S1.
youtu.be/Ee2sU-AZWC4 provides a high-level overview of the results reported in
this paper.

4.5 Supplementary Discussion

Embodiment.
We consider an agent to be embodied if its output affects its input. This relationship
may be represented by the simple update rule `t+1 = f(`t, φ), where `t denotes the
morphology of an agent at time t, and φ denotes its control policy. In a disembodied

73

https://github.com/skriegman/how-devo-can-guide-evo
https://youtu.be/Ee2sU-AZWC4

system, changes to the morphology are not directly constrained by its current state;
the update rule becomes: `t+1 = f(φ).

Once a round robot begins rolling, its control policy cannot instantaneously force
the system to go in the other direction, since momentum will tend to preserve forward
movement. This has the effect of reducing selection pressure on the controller, since
fewer variations are deleterious. This allows evolution to continue climbing fitness
gradients by mutating the controllers within these permissive body plans.

This might also be possible in disembodied agents if other dimensions of the system
can be changed by some search process such as to facilitate the search for φ.

4.6 Supplementary Methods

Rigid-bodied robots.
Rigid-bodied robots and their environment were simulated using Pyrosim (ccap-
pelle.github.io/pyrosim). The robot is a quadruped with a large, spherical abdomen;
each leg is attached by a single degree-of-freedom hinge joint.

Morphological development was approximated in rigid bodies using linear actu-
ators to slowly lengthen or shorten the length of each leg, from an evolved starting
value (between 0 and 1) to an evolved final value (between 0 and 1). The controller is
a simple neural net: two central pattern generators are fully connected to four motor
neurons, each of which innervate a separate hinge joint. Controller development was
approximated in neural networks through ballistic change to each synaptic weight:
As the simulation proceeds, each weight develops linearly, from an evolved starting
value (between -1 and +1) to an evolved final value (between -1 and +1).

The genotype spans two arrays: one for initial and final synaptic weights (con-
troller), and another for initial and final leg lengths (morphology). Mutations affect,
on average, a single element in each array. Apart from the genotype and its muta-

74

https://ccappelle.github.io/pyrosim/
https://ccappelle.github.io/pyrosim/

tions, the evolutionary algorithm is identical to that of the soft robots. However,
the task environment now consists of a sloped floor, declined toward a light source;
and performance is measured by the average light intensity recorded by a light sensor
embedded in the center of the agent’s abdomen, according to the inverse square law
of light propagation, at each time step in its life. Occlusion of the light caused by
interference of the robot’s own body parts was not simulated.

The results are presented below in Supplementary Fig. S5.

Mutations for soft robots.
The following derivation shows that there is a negligible difference in the mutations
produced by the Evo and Evo-Devo treatments, in terms of the number of voxels
modified (Fig. S4).

Each voxel cell of a soft robot has its own material properties that can be changed
by the evolutionary algorithm. Evo voxels have two material properties: (1) resting
length and (2) phase offset. Evo-Devo voxels have four material properties: (1)
initial resting length, (2) final resting length, (3) initial phase offset, and (4) final
phase offset.

Mutations are applied by first choosing which material properties to mutate, and
then choosing, separately for each property, which voxels to modify. For each of the
n material properties, we select it with independent probability p = 1/n. If none are
selected, we randomly choose one. This occurs with probability (1− p)n. Hence the
number of selected material properties for mutation is a random variable S which
follows a truncated binomial distribution,

Pr(S = s | n) =

0 for s = 0

np(1− p)n−1 + (1− p)n for s = 1(
n

s

)
ps(1− p)n−s for s > 1

(4.7)

The expected number of selected material properties is then:

E(S) = np(1− p)n−1 + (1− p)n +
n∑
s=2

s

(
n

s

)
ps(1− p)n−s (4.8)

= (1− p)n +
n∑
s=1

s

(
n

s

)
ps(1− p)n−s (4.9)

= (1− p)n + np (4.10)
= (1− p)n + 1. (4.11)

75

For a selected material property, each voxel is mutated independently with prob-
ability λ, a hyperparameter we call the mutation rate. The expected number of
genotype elements mutated given K total voxels is thus:

δgene = λK · E(S). (4.12)

Dividing by the length of the genome, nK, we get the expected proportion of genotype
elements mutated:

πgene = λ/n · E(S). (4.13)
Note that imposing bilateral symmetry does not change these expected values.

We have K = 48 total voxels, and n = {2, 4} material properties for our two main
experimental treatments {Evo, Evo-Devo}, respectively. The expected difference be-
tween a robot and its offspring, in terms of genotype elements, is summarized in the
following table.

n = 2 n = 4
δgene 60λ 63.8175λ
πgene 0.625λ 0.3291λ

However, because multiple material properties can be mutated within a single voxel,
the expected number of voxels mutated is lower than the expected number of genotype
elements mutated. To calculate the average number of voxels mutated we need to
consider a hierarchy of binomial distributions.

Given that S material properties were selected for mutation, the number of ma-
terial properties mutated within a single voxel, M follows a binomial distribution,

Pr(M = m | S, λ) =
(
S

m

)
λm(1− λ)S−m. (4.14)

For brevity, let’s denote the probability that at least one mutation occurs within the
voxel as θ,

θ = Pr(M > 0 | S, λ) = 1− (1− λ)S. (4.15)
Then the number of voxels mutated, V , across a total of K voxels and S selected
material properties, also follows a binomial distribution:

Pr(V = v | S,K, λ, n) =
(
K

v

)
θv(1− θ)K−v. (4.16)

76

And the expected number of voxels mutated (out of K total) is

δvox = E(V | K,λ, n) (4.17)
= ES EV (V | S,K, λ, n) (4.18)
= ES(Kθ | S,K, λ, n) (4.19)
= K

{
1− ES

[
(1− λ)S | λ, n

]}
(4.20)

= K

{
1−

[
(1− λ)(1− p)n +

n∑
s=1

(1− λ)s
(
n

s

)
ps(1− p)n−s

]}
(4.21)

= K

{
1− (1− p)n

[(
λp− 1
p− 1

)n
− λ

]}
(4.22)

There is an extremely tight bound on the proportion of voxels mutated, πvox =
δvox/K, for any n > 1 (Fig. S4). Thus mutations in Evo (n = 2) and Evo-Devo (n =
4) have practically the same impact in terms of the number of voxels modified. For
completeness, the following table displays δvox for the specific values of λ considered
by our hyperparameter sweep (K = 48) (Fig. S3).

λ
1/48 2/48 4/48 8/48 16/48 24/48 32/48 48/48

n
2 1.25 2.48 4.92 9.67 18.67 27 34.67 48
4 1.3 2.6 5.14 10.05 19.17 27.46 34.98 48

77

Figure 4.7: Evolutionary change during 30 Evo-Devo trials. The amount of morphological develop-
ment,WL (see Equation 3), controller development,WΦ (see Equation 4), and fitness, F , for the lineages
of the 30 Evo-Devo run champions. Evolutionary time, T , moves from the oldest ancestor (left) to the
run champion (right). A general trend emerges wherein lineages initially increase their morphological
development in T (rising red curves) and subsequently decrease morphological development to almost
zero (falling red curves). Five of the 30 evolutionary trials, annotated by ∗, fell into a local optima.

78

Figure 4.8: Experimental treatments. The phase of an oscillating global temperature (A, F) is offset
in the k-th voxel by a linear function from φk to φ∗k (B, G). The resting length of the k-th voxel is a linear
function from `k to `∗k (C, H). For Evo, there is no development, so φk = φ∗k and `k = `∗k. The offset
actuation is added on top of the resting length to give the current length of the k-th voxel (D, I). These
example voxel-level changes occur across ontogenetic time (t), independently in each of the 48 voxels, and
together interact with the environment to generate robot-level velocity (E, J). To see this, we averaged
displacement across intervals of two actuation cycles (0.5 sec) and plotted the smoothed velocities for two
Evo-Devo run champions with minimal canalization (J) alongside their non-developmental counterparts
(E). Also note that the frequency of actuation is plotted here at 1.4 Hz; but, in our experiments, we used
a frequency of 4 Hz.

79

Figure 4.9: Mutation rate sweep. Median fitness (with 95% bootstrapped confidence intervals) un-
der various mutation rates, λ, a hyperparameter defined in Supplementary Methods which affects the
probability a voxel is mutated. In the main experiment of this paper, the mutation rate is evolved for
each voxel independently, and is constantly changing. In this mutation rate sweep, λ is held uniform
across all voxels. There were two observed basins of attraction in terms of fitness: a slower design that
trots/gallops 5-15 body-lengths during the evaluation period, and a faster design type that rolls at 50-70
body-lengths. Although higher mutation rates facilitate the discovery of the superior phenotype, once
found, lower mutation rates tend to produce more refined and faster robots. Without development, the
search space has a single spike of high fitness. One can not do better than random search in such a space.
When λ = 1, optimizing Evo morphologies reduces to random search, and this is the only mutation rate
where Evo does not require significantly more generations than Evo-Devo to find the faster design type.
This can be observed for λ ∈ {1/6, 1/3, 1/2, 2/3, 1}, by comparing the generation at which the slopes
of the fitness curves increase dramatically. However, the best two treatments (Evo-Devo at λ = 1/2 and
λ = 2/3), as measured by the highest median speed at the end of optimization, have development, and
the robots they produced are significantly faster than those produced by random search (Evo with the
highest mutation rate) (p < 0.01).

80

Figure 4.10: Mutational impact. The expected proportion of voxels modified, πvox, where n is the
number of material properties that can be mutated, and λ is the mutation rate. A derivation is provided
in Supplementary Methods. Regardless of n, when λ = 1, every voxel must be mutated, and when λ = 0,
no voxels can be mutated. Between these two points, there is an extremely tight bound on the proportion
of voxels mutated for any n > 1. In this paper, we have treatments Evo, with n = 2, and Evo-Devo,
with n = 4.

81

Figure 4.11: Differential canalization in rigid bodies. This environment consists of a sloped floor,
declined toward a light source. Rigid-bodied robots, which are described in Supplementary Methods,
perform phototaxis. Although longer legs produce faster walking behaviors, the shortest leg setting
places the robot’s large, spherical abdomen onto the ground, allowing the robot to simply roll down the
ramp toward the light. An ancestor discovers rolling over toward the end of its evaluation period through
ontogenetic morphological change that compresses leg lengths. This rollable morphology is assimilated
to the start of development through differential canalization: The sooner a robot shrinks its legs, the
sooner it can begin rolling; eventually descendants start with compressed legs, are able to immediately
roll, exhibit little to no morphological change, but continue to sweep over many different synaptic weights
as they behave. Rolling down the slope is not entirely passive, however, since protruding legs, even at
their shortest setting, can slow down or even stop forward movement. The best controllers not only avoid
such interference, but also guide rolling toward the light source. However, development in this particular
case did not affect evolvability. These results are consistent with predictions made by other quantitative
models used in theoretical biology that suggest that plasticity only expedites evolution under restrictive
conditions [6]. We hypothesize that, in our case, this is because the search space is not deceptive enough:
Once the rigid-bodied robot evolves to compress its legs, and touch its abdomen to the sloped floor, it
will tend to roll for the remainder of its evaluation period. That is, in contrast with the soft robots, there
is no intermediate stage between walking and rolling that suffers the fitness penalty of no longer being
able to move.

82

Chapter 5

Material, Structure, Configuration

Appeared as:
S. Kriegman et al., Interoceptive robustness through environment-mediated morpho-
logical development. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) (2018).

104 105 106 107 108 109 1010
Stiffness (Pa)

Figure 5.1: A single robot grows calluses as it walks, in response to pressure on its feet (video:
youtu.be/0cmwpcxSUWI).

Abstract:
Typically, AI researchers and roboticists try to realize intelligent behavior in machines
by tuning parameters of a predefined structure (body plan and/or neural network ar-
chitecture) using evolutionary or learning algorithms. Another but not unrelated
longstanding property of these systems is their brittleness to slight aberrations, as
highlighted by the growing deep learning literature on adversarial examples. Here we
show robustness can be achieved by evolving the geometry of soft robots, their con-
trol systems, and how their material properties develop in response to one particular
interoceptive stimulus (engineering stress) during their lifetimes. By doing so we re-
alized robots that were equally fit but more robust to extreme material defects (such
as might occur during fabrication or by damage thereafter) than robots that did not
develop during their lifetimes, or developed in response to a different interoceptive
stimulus (pressure). This suggests that the interplay between changes in the contain-
ing systems of agents (body plan and/or neural architecture) at different temporal

83

https://arxiv.org/abs/1804.02257
https://arxiv.org/abs/1804.02257
https://youtu.be/0cmwpcxSUWI

scales (evolutionary and developmental) along different modalities (geometry, mate-
rial properties, synaptic weights) and in response to different signals (interoceptive
and external perception) all dictate those agents’ abilities to evolve or learn capable
and robust strategies.

5.1 Introduction
A major characteristic of life is that three broad time scales are relevant to it: evo-
lution, development and physiological functioning. Engineered systems, in marked
contrast, often employ an evolutionary or learning algorithm to improve their be-
havior over time, but rarely employ morphological development; any changes to the
physical layout are made in between evaluations [42, 140, 215], if they are made at
all.

Two notable exceptions are modular robots [257], which may reconfigure their
bodies by adding and removing discrete structures, and soft robots [210], which may
continuously alter the local volumes of different parts of their bodies while behav-
ing. Others [28] have approximated topological change in rigid bodies by extending
outward and angling downward appendages using a combination of linear and rotary
actuators, thus simulating limb growth.

Several computational but embodied models of prenatal development have been
reported in the literature [29, 60, 64, 68, 154]. As implied, cellular growth therein
occurred prior to any physiological functioning. Thus, these studies included change
during only two of the three time scales relevant to life: evolutionary and behavioral
change, but not postnatal developmental change.

The most common argument in favor of development is that some aspects of
the environment are unpredictable, so it is advantageous to leave some decisions up
to development rather than specifying them genetically. Although self evident, it
remains to determine which mechanisms of development should be instantiated in
robots to realize plastic, adaptive, and useful machines.

Naturally, the performance of an evolved system depends on its capacity for evo-
lutionary improvement: its evolvability. Development can, under certain conditions,
smooth the search space evolution that operates in, thus increasing evolvability. This
process, known as the Baldwin effect [12, 62], starts with an advantageous character-
istic acquired during the development of individuals, such as the callouses in Fig. 5.1.
This can create a new gradient in the evolutionary search space, rewarding descen-
dants that more rapidly manifest the trait during their lifetimes [96, 122] and retain
it through the remainder of their lifetime [121]. Assuming such mutations exist and
can be naturally selected [122], following the gradient requires incrementally reducing
development in the manifold of the search space that can express variations on the

84

trait [244].
However, fitness landscapes that evolution climbs, and development sometimes

smooths, tend not to remain static in realistic settings. On this vacillating landscape,
when the best thing to do does not remain the same, a highly evolvable but non-robust
system will need to keep starting over from scratch every time the conditions change.
Computational and engineered systems provide countless examples of systems with
nearly perfect performance in a controlled environment, such as a factory, but who
turn out to be (often comically) brittle to slight changes in their internal structure,
such as damage, or their external environment such as moving on to new terrain or
transferal from simulation to reality [8, 37, 85, 117, 170, 229].

Although generally absent from engineered systems (but see [27, 55]), the canon-
ical form of robustness is seen to some extent in all organisms, and it comes from
the act of development itself. For example, a plant that grows according to a fixed
program will capture less light than a plant that grows toward sunlight. But there is
another, more subtle form of robustness that we will refer to as ‘intrinsic robustness’
because it is a property of a system’s structure rather than of the process by which
it may change.

Developmental change produces intrinsically robust systems because they evolved
from designs that had to maintain adequate performance along additional dimensions
of change [28, 122]. Through morphological development specifically, evolution is
compelled to maintain designs that are capable across a series of body plans, with
different sensor-motor contingencies; and the ability to tolerate such perturbations
can become inherited to some extent in descendants’ behaviors [28] and morphologies
[122], even when their developmental flexibility is reduced or completely removed by
canalization or fabrication.

And yet, despite the ubiquity of morphological development in nature, and the
adaptive advantages it seemingly confers, there are only a handful of cases reported
in the literature in which a simulated robot’s mechanical structure was allowed to
change while it was behaving (e.g. [28, 114, 121, 122, 243]), all of which modeled
morphological development as a genetically predetermined process: the environment
could not influence the way in which development unfolded.

Assuming that an engineered system is capable of local morphological change
in response to environmental signals, it is unclear how it should do so, beyond the
examples of morphological plasticity observed in nature. Examples include Wolff’s
law [198]—bone grows in response to particular mechanical loading profiles—and
Davis’ law—soft tissue increases in strength in response to intermittent mechanical
demands. One can envisage other such laws that are not known to occur in biology
but could be helpful in a specific artificial system, such as end effectors softening in
response to pressure, which might enhance their ability to safely manipulate irregular
or delicate objects [34]. Indeed, the genesis of the work presented here is one such

85

anecdotal example given in [54], where a single robot, subjected to an abrupt doubling
in gravity, stiffened its body in reaction to the increased pressure. However, whether
or how it could provide a behavioral advantage, nor whether pressure is the best
interoceptive signal to developmentally respond to, was not investigated.

As a step towards a more adequate picture, we introduce here a simple form
of a developmental feedback mechanism: Genetic systems dictate how organisms
develop in response to interoceptive stimuli, and development alters the kinds of
interoceptive conditions the organism experiences. More specifically, at every time
step, the proposed model of closed-loop development:

1. ‘listens to’ load signatures generated from movement; and, in response,

2. modifies the robot’s rigidity,

which will change the way it distributes load and generates movement at the next
time step.

Optimizing a system that may form a continuum of rigid and soft components—
and in which this admixture may change over time—is extremely nonintuitive and
underexplored. Thus, a study of the adaptive properties of such systems—and how
they can best be optimized to render useful work—is initiated here.

5.2 Methods
We evolved locomotive machines constructed from voxels with heterogeneous stiff-
ness. Like many organisms [198], the robot’s material stiffness progressively changes
in response to mechanical loading incurred as the robot behaves. This ontogenetic
change occurs independently at each voxel according to an evolved local rule.

Physical simulation.
The soft-matter physics engine Voxelyze [95] is used to calculate the movement of
robots resulting from their interaction with a virtual 3D terrestrial environment.
Each robot is simulated for 25 times the length of an expansion/contraction cycle (a
total of five seconds). The displacement between the starting coordinates and the
agent’s final center of mass (in the xy plane) is recorded.1

1github.com/skriegman/2018-gecco contains the source code necessary for reproducing the
results reported in this paper.

86

https://github.com/skriegman/2018-gecco

Heavy materials.
Materials are simulated to have increased mass relative to those used by [42, 43, 94].
Constructed from heavier materials, many previously mobile robots become crushed
under their own weight and require stiffer material to support locomotion with the
same geometry. However, we also restricted actuation amplitude as materials grow
stiffer to better approximate the properties of real materials with different stiffnesses.
This creates an interesting and realistic trade-off: the stiffest material can easily
support any body plan but cannot move on its own (like a skeleton without muscle),
whereas the softest material can readily elicit forward movement in smaller bodies
but cannot support many larger and potentially faster-moving body plans, such as
those with narrow supporting limbs. Thus, a robot must carefully balance support
with actuation.

Quad-CPPN encoding: C1,C2,C3,C4

Following [42], robot physiology is genetically encoded by a Compositional Pattern
Producing Network (CPPN) [221], a scale-free mapping that biases search toward
symmetrical and regular patterns which are known to facilitate locomotion.

Each point on a 10×10×10 lattice is queried by its cartesian coordinates in 3D
space and its radial distance from the lattice center. An evolved CPPN takes these
coordinates as input and returns a single value which is used to set some property of
that point in the workspace. We used four independent CPPNs to separately encode:
Geometry, Stiffness, Development, and Actuation.

C1 Geometry.
The geometry of a robot is specified by a bitstring that indicates whether material is
present (1) or absent (0) at each lattice point in the workspace, as dictated by C1.
The robot’s geometric shape is taken to be the largest contiguous collection of present
voxels.

C2 Stiffness.
Young’s modulus is often used as an approximate measure of material stiffness.
Robots are typically constructed of materials such as metals and hard plastics that
have moduli in the order of 109− 1012 pascals (Pa), whereas soft robots (and natural
organisms) are often composed of materials with moduli in the order of 104 − 109 Pa
[199].

Here, voxels may have moduli in the range 104 − 1010 Pa. The robot’s congenital
stiffness is set at each voxel by C2, but may be changed by development.

87

C3 Development.
The robot’s stiffness distribution k can change progressively during its lifetime t in
response to localized engineering stress σ or pressure p. The rate of change αi is
specified at the ith voxel by C3, with possible values in 0 ± 10. We compare three
developmental variants.

None: dki
dt

= 0 (5.1)

Stress: dki
dt

= αi ·
dσi
dt

(5.2)

Pressure: dki
dt

= αi ·
dpi
dt

(5.3)

C4 Actuation.
Robots are ‘controlled by’ volumetric actuation: a sinusoidal expansion/contraction
of each voxel with a maximum amplitude of 50% volumetric change.2 However, linear
damping ξ is implemented into the system such that the stiffest material does not
actuate (Eq. 5.5). The phase difference φi of each voxel is determined by C4, which
offsets its oscillation relative to a central pattern generator.

Prior to actuation, each voxel has a resting length of one centimeter. This length
is periodically varying (f = 5 Hz) by approximately 14.5% (A ≈ 0.145 cm), but
damped by ξ. The instantaneous length of the ith voxel is thus:

ψi(t) = 1 + A · sin(2πft+ φi) · ξ(ki) , (5.4)

where:
ξ(ki) = kmax − ki

kmax − kmin
. (5.5)

Evolution.
We employed a standard evolutionary algorithm, Age-Fitness-Pareto Optimization
[204], which uses the concept of Pareto dominance and an objective of age (in addition
to fitness) intended to promote diversity among candidate designs.

We performed twenty independent evolutionary trials with different random seeds
(1-20); in each trial, a population of 24 robots was evolved for five thousand genera-
tions. Every generation, the population is first doubled by creating modified copies

2The scare quotes are intended to highlight the fact that actuation policies no more dictate the
movement of a robot than its geometry.

88

of each individual in the population. The age of each individual is then incremented
by one. Next, an additional random individual (with age zero) is injected into the
population (which now consists of 49 robots). Finally, selection reduces the popula-
tion down to its original size (24 robots) according to the two objectives of fitness
(maximized) and age (minimized).

Mutations add/remove/alter a particular node/link of a CPPN. They are applied
by first selecting which networks to mutate, with the possibility to select all four, and
then choosing which operations to apply to each.

Hypothesis testing.
We use bootstrapping to construct hypothesis tests. All P -values are reported with
Bonferroni correction for multiple (typically three) comparisons. We adopt the fol-
lowing convention: ‘∗∗∗’ for P < 0.001; ‘∗∗’ for P < 0.01; and ‘∗’ for P < 0.05.

5.3 Results
Videos of all sixty run champions (pictured in Figs. 5.2, 5.3, 5.4) can be seen at
goo.gl/T5wZNQ.

Evolvability.
We first investigated whether environment-mediated morphological development af-
fected evolvability (Fig. 5.5A). At the termination of an evolutionary trial, we only
consider the most fit individual—the run champion—from each of the twenty inde-
pendent trials (Figs. 5.2, 5.3, 5.4). After correcting for three comparisons, there was
not enough evidence to reject the null hypothesis—that there is no difference between
adaptive and nonadaptive robots, in terms of mean displacement—at the 0.05 level.

These results could be taken to suggest one of the following. Either the search
space is sufficiently smooth prior to development (actuation and support are not as
antagonistic as envisaged), or the proposed developmental mechanism is an insuffi-
cient smoothing mechanism (successful ways to change stiffness as a linear function
of stimuli are sparse in the search space).

Geometric diversity.
We investigate morphological diversity next by employing the Hausdorff distance dH
as a metric to compare the similarity of two robot geometries, A and B. For each
voxel in A, the closest voxel in B is identified, according to euclidean distance d.

89

https://www.youtube.com/playlist?list=PL7qssg0uLKTaFhaCRC0WviaGeOitOE8MR

Non-developmental champions (Eq. 5.1)

Figure 5.2: Run champions colored by congenital stiffness, which ranges from 104 to 1010 Pa. After
settling under gravity, robots move toward the right-hand side of the page.

90

Stress-adaptive champions (Eq. 5.2)

Figure 5.3: Run champions colored by congenital stiffness which can change during operation (ontogeny)
in response to engineering stress.

91

Pressure-adaptive champions (Eq. 5.3)

Figure 5.4: Run champions are colored by congenital stiffness which can change during operation
(ontogeny) in response to pressure.

92

Figure 5.5: Means (with 95% C.I.) for various statistics of the run champions, at generation 5000: (A)
Fitness as the final displacement of a robot, measured by voxel-length units; (B) Diversity as the pairwise
Hausdorff distances of robot geometries; (C) Robustness as the relative fitness (testing fitness divided by
training fitness) after development is removed and a random stiffness distribution is introduced into the
champion’s body (Eq. 5.7); (D) Mean, taken across the body, of relative lifetime change in stiffness, as a
measure of the lack of canalization (Eq. 5.8; lower bars indicate more canalization); (E) Variance, taken
across the body, of relative lifetime change in stiffness, as a measure of heterogeneity/nonuniformity
in developmental reactions (Eq. 5.9); (F) Variance, taken across the body, of the coefficients/gain of
developmental reactivity (Eq. 5.10).

Similarly, for each voxel in B, the closest voxel in A is identified. The Hausdorff
metric is the larger of these two distances. Formally,

dH(A,B) = max{ sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b) } . (5.6)

Informally, two robots are close in the Hausdorff distance if every voxel of either robot
is close to some voxel of the other robot.

We calculated the Hausdorff distance between each of the
(

20
2

)
= 190 possible

pairings of the 20 run champions (Fig. 5.5B). Because dH(A,B) depends on the
orientations of A and B, we rotate B in the xy plane (0, 90, 180, and 270 degrees)
and the yz plane (0 and 90 degrees), and select the rotation that creates the smallest
dH(A,B).

93

We found the evolved body shapes of pressure-adaptive robots to be more diverse
than those of stress-adaptive robots (P < 0.001). We did not find a significant
difference, at the 0.05 level, between adaptive and nonadaptive treatments using this
particular measure of morphological diversity.

Across all three treatments, there appear on visual inspection to be three types of
geometries (Figs. 5.2-5.4): a Π robot with wide posterior and anterior legs; a Γ robot
whose legs meet perpendicularly; and a Υ robot that connects a (mainly cylindrical)
leg perpendicularly to the center of a 10× 10 vertical plane. Depending on how one
counts, the Υ species can be seen in at most one nonadaptive robot (Fig. 5.2, run
19), two stress-adaptive robots (Fig. 5.3, runs 7 and 16), and six pressure-adaptive
robots (Fig. 5.4, runs 2, 6, 7, 9, 12, and 16). Pressure-adaptive robots have more
diversity by virtue of more Υ robots.

Interoceptive robustness.
To investigate the relative robustness (if any) across the three treatments, in the fol-
lowing experiment, development was manually removed from the stress- and pressure-
adaptive run champions. We then tested the sensitivity of the resulting reduced robots
to their evolved congenital stiffness distribution (Fig. 5.5C). To do so, we replaced
the evolved network dictating material stiffness, C2, with a random number gener-
ator that draws from the same range of possible stiffness (104 − 1010 Pa). That is
to say, we ‘built’ the evolved run champions without any errors in the specifications
of geometry and actuation, but completely ignored the evolved specifications of their
material stiffness, replacing them instead with random noise. We then calculated the
relative fitness

R = Ftest /Ftrain , (5.7)
where Ftrain is the fitness achieved using the evolved stiffness and Ftest is the fitness
when tested with a random stiffness distribution. We repeated this process ten times
for each run champion, each time drawing a new random stiffness distribution.

We found that, compared to nonadaptive robots, reduced stress-adaptive robots
were more robust to this (extreme) discrepancy between training and testing stiffness
distributions (P < 0.01). These results are consistent with the found correlation
between development and robustness [28, 122, 154]. However, the results here indicate
that this correlation is contingent on the kind of environmental signal the developing
agent responds to: there was no difference between pressure-adaptive and nonadaptive
robots in this regard, at the 0.05 level.

This implies that by behaving interoceptively with respect to engineering stress,
robots evolved the ability to ameliorate large deviations from their expected mate-
rial properties, but by behaving interoceptively with respect to pressure, robots did
not evolve this character. Because development was manually removed beforehand,

94

robustness in our case was not a matter of changing one’s body, as in the example
of plant growth [226]; rather, it is an intrinsic property of structure (geometries and
actuation patterns) educed from ancestors who changed in response to one particular
internal state (stress), but not from those who responded to another (pressure).

The difference in robustness between nonadaptive robots and stress-adaptive, but
not pressure-adaptive robots, could be due in part to the fact that there are simply
more pressure-adaptive Υ robots than stress-adaptive Υ robots. While Υ robots tend
to be more fit than Π and Γ robots (PΠ < 0.05; PΓ < 0.05), they also appear to
exploit their material properties to a greater degree, and are thus more sensitive to
changes in its constitution, compared to Π and Γ robots (PΠ < 0.05; PΓ < 0.01).

The Υ robot generates movement by pushing off its posterior leg, which must
be rigid enough to support itself as well as propel forward the center portion of its
anterior wall (e.g. run 12 in Fig. 5.4). The robot loses kinetic energy, which is stored
as elastic strain energy in the spring-like voxels between the wall’s center and edge.
The most strain is present in the dorsal portion of the anterior wall. The springs
recoil, restoring kinetic energy and generating forward motion. If the posterior leg is
too soft, or the dorsal anterior wall too rigid, the Υ robot can suffer a large drop in
performance.

Differences in geometry, however, shed no light on why (the reduced) stress-
adaptive robots are more robust than nonadaptive robots: the level of significance
(P < 0.01) does not change after removing the only nonadaptive robot that could
possibly be classified as Υ (Fig. 5.2, run 19). Thus we continue our investigation by
analyzing how stress and pressure might differentially affect the rate of developmental
reactions.

Canalization.
One indication of canalization [122, 244] in our system is given by the magnitude of αi
in each voxel, as defined by Eqs. 5.2 and 5.3. However, this is but one of two necessary
ingredients for a developmental reaction: it indicates bodywide responsiveness to
potential stimuli, but ignores the actual stimulus.

Thus, as proxy for canalization, we measured the amount of morphological change
in reaction to local stimulus, during evaluation. More precisely, we recorded the mean,
across the body, of relative lifetime change in stiffness

Mbody = 1
#γ

∑
i∈γ

∣∣∣k+
i /k

◦
i − 1

∣∣∣ , (5.8)

where k◦i is the congenital stiffness, k+
i is the final stiffness, and γ = {i : gi =

1} contains the coordinates i of each voxel gi present in the (bit array) geometry

95

which has cardinality #γ (total voxels). Less change—lower Mbody—indicates more
canalization.

On average, voxels in stress-adaptive robots change their relative stiffness less
than voxels in pressure-adaptive robots (P < 0.001) (Fig. 5.5D). In other words,
developmental reactions are canalized to a greater extent in stress-adaptive robots.
It follows, then, that the treatment with increased robustness was also the treatment
with increased canalization.

To get a sense of the consistency of developmental reactions, as they occur across
the body of evolved robots, we also recorded the spatial variance of this relative lifetime
change

Vbody = Vari∈γ
(∣∣∣k+

i /k
◦
i − 1

∣∣∣) . (5.9)
By this measure, stress-adaptive robots exhibit more uniform reactions than pressure-
adaptive robots (P < 0.05) (Fig. 5.5E).

Taken together, then, we may say that the developmental reactions of stress-
adaptive robots are more uniform in space (lower Vbody; Fig. 5.5E), and more canal-
ized in magnitude (lower Mbody; Fig. 5.5D) than those of pressure-adaptive robots.
Pressure-adaptive robots therefore experience larger and more localized changes in
stiffness during their lifetime.

There are two possibilities that could explain this more localized change in stiffness
in the pressure-adaptive robots. One possibility is that there is greater variance among
the αi in the pressure-adaptive robots. The alternative is that there is greater variance
in the application of pressure throughout the body. To test the first possibility, we
first normalized αi in pressure- and stress-adaptive robots by the differing ranges of
α that evolved in the pressure-adaptive (-5.36 to 5.63) and stress-adaptive (-10.00 to
6.42) robots. Then we took the variance of αi across the body of each run champion,
individually:

Vgain = Vari∈γα̃i , where α̃i = αi − αmin

αmax − αmin
. (5.10)

We found no evidence to support the hypothesis that αi in pressure-adaptive robots
vary more (or less) in space than those in stress-adaptive robots (Fig. 5.5F).

Therefore, because there is no difference in the variation of αi (Fig. 5.5F), and
because αi cannot change during operation (Eqs. 5.2 and 5.3), it follows that pressure
was generally much more localized within the bodies of the pressure-adaptive robots
than stress within the bodies of the stress-adaptive robots. In other words, the entire
body plan encountered stress, but only a small portion of the body encountered
appreciable pressure. (An example of this localized response to localized pressure can
be seen in Fig. 5.1.) We hypothesize that this global spread of stress is the likely
cause of increased robustness in the stress-adaptive robots (Fig. 5.5C).

96

5.4 Discussion
Building systems that are robust in the face of changing environmental conditions is a
grand challenge in robotics and AI. The brittleness of current systems is exemplified
by the growing literature on adversarial examples [8, 170, 229], and the fact that
almost all practical robots are confined to the perfectly flat floors they clean, or the
hermetic factories built around their work. Robustness is not unknown in human-
engineered systems, but it is relatively rare; in nature it is everywhere, and one of the
reasons is that in nature organisms develop: They constantly change not just their
cognitive architectures but the morphologies that contain them and mediate with the
external world.

It has been shown for rigid robots [28] that morphological development can in some
cases increase robustness since it exposes evolution to richer sensory information: the
robot must maintain locomotion while changing its body. Soft robots have much
greater potential in this domain: If soft, there are more ways that morphology can
change, so by definition the increase in breadth in sensorimotor experiment induced by
development will be even greater than that for developing yet rigid machines. Toward
this goal, by allowing material stiffness to be plastic, we have here investigated a
heretofore unexplored dimension of morphological change (stiffness) not available to
rigid robots.

Advances in materials science and 3D printing promise new engineered systems—
protean machines—that may continuously morph in response to changing environ-
mental signals. Simply put, if a robot always changes its strategy along many mor-
phological and neural modalities, it is more difficult to fool with a static adversarial
example or a new task environment. Little to no analysis has been conducted, how-
ever, into how such systems should respond to environmental stimuli in order to adapt
their functions in the face of changing environmental conditions.

In initiating such a study here, we have shown that it is not just a matter of
reacting to any stimulus: different types of developmental feedback loops elicit dif-
ferent evolved properties. We observed that if one modality (stiffness) responds to
one particular internal signal (engineering stress) but not another (pressure), robots
evolved structure that intrinsically buffered large deviations from their expected ma-
terial properties.

Pressure and stress bear distinct mechanical load signatures which in turn stim-
ulated very different developmental reactions. Intriguingly, increased robustness was
correlated with increased canalization: developmental reactions with stress were
canalized to a greater degree than those with pressure. Although developmental
reactions with pressure did not afford the evolution of robustness here, it did increase
evolutionary divergence: pressure-adaptive robots evolved more diverse (congenital)
shapes than stress-adaptive robots. Our work here suggests there may be other de-

97

velopmental feedback loops that could be made available to evolution that would lead
to more diverse and robust robots.

For our purposes, ‘morphology’ is a robot body, but the concepts here could
equally be applied to non-embodied systems, such as the architectures of deep neural
networks [153, 256]. One could define internal neural processes such as node sharp-
ening [81], Hebbian learning, or neurotransmitter diffusion [102, 241] as interoceptive
signals to which the neural network developmentally responds in a structural man-
ner, such as adding or removing neurons. Meanwhile, at a faster time scale, synaptic
weights might be tuned in response to exteroceptive signals such as gradients of a
loss function. Finally, such a network could be placed inside a robot which itself is
experiencing morphological change.

98

Chapter 6

Structure, Shape, Configuration

Appeared as:
S. Kriegman et al., Automated shapeshifting for function recovery in damaged robots.
In Proceedings of Robotics: Science and Systems (RSS) (2019).

Figure 6.1: After learning to walk, a simulated quadruped is subjected to unanticipated insult: its legs
are cut off. An evolutionary algorithm searches for deformations to the postdamage structure that, when
coupled with the predamage controller, result in function recovery. One of the evolved solutions (shown
here) yields the spontaneous “regeneration” of the lost legs, which was manually transferred to reality
(youtu.be/fFIDz8maVh0).

Abstract:
A robot’s mechanical parts routinely wear out from normal functioning and can be
lost to injury. For autonomous robots operating in isolated or hostile environments,
repair from a human operator is often not possible. Thus, much work has sought
to automate damage recovery in robots. However, every case reported in the liter-
ature to date has accepted the damaged mechanical structure as fixed, and focused
on learning new ways to control it. Here we show for the first time a robot that
automatically recovers from unexpected damage by deforming its resting mechanical
structure without changing its control policy. We found that, especially in the case
of “deep insult”, such as removal of all four of the robot’s legs, the damaged machine
evolves shape changes that not only recover the original level of function (locomo-

99

http://www.roboticsproceedings.org/rss15/p28.html
https://youtu.be/fFIDz8maVh0

tion) as before, but can in fact surpass the original level of performance (speed). This
suggests that shape change, instead of control readaptation, may be a better method
to recover function after damage in some cases.

6.1 Introduction
Certain remote, hazardous or otherwise inaccessible environments preclude human
intervention when a robot fails or is damaged. It would thus be advantageous for
systems operating in such environments to have some capacity for self -maintenance
and -repair.

Indeed, much work has investigated how, in the absence of external supervi-
sion, a robot can automatically learn new ways to control its body when dam-
aged [27, 39, 55, 111, 127, 146, 194]. While a diverse set of recovery mechanisms have
been proposed, they all shared a common assumption: The damaged mechanical
structure could be reconfigured, but not fundamentally deformed.

This assumption is reasonable in classical robots, which are, generally, jointed
collections of rigid links. But recent advances in materials science and 3D printing
are enabling the construction of soft machines with theoretically infinite degrees of
freedom and thus capable of deforming their structures so as to regenerate a lost
part or embrace an entirely new geometry in the face of unanticipated insult. The
possibility of such change affords a completely novel mode of damage recovery: No
robot built to date has altered its resting structure in order to recover function lost
due to damage.

Previous computational studies have demonstrated structural but non-functional
change in discrete models. For example, cellular automata have been trained to grow a
target structure from a single cell [68, 154]. Similar growth rules could in principle be
instantiated in self-assembling modular robots [251, 257]. However, structural change
would require access to additional modules in the environment, redundant modules
on the body, or the ability to internally generate them. Moreover, it is unclear how
or if such rules could dictate continuous geometric deformation in soft robots.

The present work builds on two closely-related research projects in which injured
robots automatically generate and test candidate control policies in order to find
compensatory behaviors that work in spite of damage [27, 55].

In the first, Bongard et al. [27] demonstrated how, under the right conditions,
an autonomous robot could internally model its own geometry with minimal sensori-
motor experiment. The benefit of this approach is that, once a sufficiently accurate
self-model has been established, actions can be internally rehearsed, discarding those
which are unsuccessful or dangerous, before attempting them in reality. If model
accuracy drops, as from structural changes due to damage, modeling resumes and

100

continues until the robot’s current morphology is adequately reflected in the robot’s
model of self.

The main drawback of this approach is that internal modeling requires additional
computation, and there are circumstances in which the robot cannot afford—in terms
of time, money, energy, stability, and the overall well-being of itself and others—to
remain stationary for extended periods of time.

To speed recovery, Cully et al. [55] proposed that robots should instead exploit
the fact that resources prior to deployment are relatively cheap in terms of the factors
listed above. A large, behavioral repertoire composed of mappings from behaviors
(for the undamaged robot) to their predicted performances can therefore be modeled
in simulation beforehand, and come preinstalled on the robot. Assuming damage is
detected by an external mechanism, the authors showed how, under certain condi-
tions, such a map can be rapidly updated and traversed to find successful behavior,
which is implicitly robust to differences between the current and pre-deployment mor-
phologies.

The robots used in this past work consisted of rigid components attached together
with a handful of mechanical degrees of freedom: The quadruped in [27] had 8 motors
and 4 DOF; the hexapod in [55] had 18 motors and 12 DOF. The control problem
was greatly impacted by these mechanical details and their intrinsic dynamics, but
they were taken as given, even when damaged, because these robots simply could not
deform their resting structure.

Instead of treating the body as just the problem domain, we here modify it as part
of the computational loop. This is possible because our robot has many more (140)
mechanical degrees of freedom, and the ability to change the volume, rather than just
the relative displacement, of each component. This flexibility enables a heretofore
unexplored mode of damage recovery: keep the existing controller but deform the
resting structure. Existing approaches to controller adaptation could in principle
(although this is not investigated here) be paired with such changes to morphology.
However, in many cases, it would be desirable to retain a previously optimized and
fine-tuned controller, especially if missing structure can simply be regenerated.

We here show that, under a wide range of damage scenarios, automated shapeshift-
ing can be advantageous, and that, in most of the cases tested, shapeshifting alone
(holding the existing controller fixed) outperforms controller adaptation alone (hold-
ing the damaged shape fixed), in terms of recovered mobility.

6.2 Methods
This section describes the hardware, simulation and control of our robot, the damage
scenarios it faces and its options for recovery: shapeshifting and controller adaptation.

101

We also define a tripartite classification—of ‘structure’, ‘shape’ and ‘configuration’—
that forms the basis of our argument, which is, briefly, that the way in which our robot
recovers from damage—shape change—was outside the scope of any robot previously
reported in the literature.

The source code.
github.com/skriegman/2019-RSS

The robot.

Figure 6.2: The blue robot, made from
thin-walled inflatable elastomer voxels.

The robot is an isobilaterally symmetrical
quadruped constructed from 140 inflatable sil-
icone “voxels” (Figs. 6.1f and 6.2). We here
present a method for creating air-filled voxel
membranes with relatively uniform thickness.

Creating thin, hollow 3D silicone structures is
challenging due to several factors, including mold
precision and potential for damage during release
from molds. One effective but labor-intensive
method is to make the 3D shapes by adhering
2D films at their joints [162]. Here, inspired by a scalable 2-axis rotational molding
technique [255], we employ a 1-axis rotational drip-molding machine.

First, silicone (Dragon Skin 10 Fast; Smooth-On, Inc.) was poured into an open-
face acrylic mold and a tongue depressor was used to roughly spread the silicone along
the walls. The mold was then attached to the rotational molding machine with the
rotation axis oriented downward at 45 degrees relative to horizontal, and run through
cycles comprising a 90° turn, stopping for 45 seconds after each turn to allow the
silicone to flow and evenly coat each side. Excess silicone dripped out of the mold,
leaving a thickness which was dependent on several interrelated factors including the
cure time, viscosity, and the interaction between the silicone and acrylic.

After the silicone cured, excess material was cut away. A silicone base-layer was
then rod-coated onto a flat acrylic sheet. Next, the bottomless cubes were placed on
the base-layer and allowed to cure, sealing air inside each voxel. The voxels were then
cut from the sheet and a small hole was punched in each voxel for tubing. Finally,
silicone tubes were inserted and bonded with Sil-Poxy (Smooth-On, Inc.).

The overall robot consists of a 6× 6× 3 voxel torso and four removable 2× 2× 2
voxel legs (Figs. 6.1f-j and 6.2). Sil-Poxy and Ecoflex 00-50 were used to improve
adhesion between voxels. To explore the effect of layer thickness on the range of
attainable morphologies, two versions of the robot were fabricated: The blue robot

102

https://github.com/skriegman/2019-RSS

(Fig. 6.2) consists of voxels made with one layer of silicone, while the purple robot
(Fig. 6.1f-j) consists of thicker-walled voxels made with two layers of silicone.

Individual cubic voxels were manually inflated at pressures less than 20 kPa, and
approached a spherical shape as pressure increased. When patterned together into a
robot, selective inflation of a subset of voxels induces overall robot shape change. To
reduce friction and weight effects in the robots, they were placed on top of a glass
crystallizing dish, which lifted their legs off the table surface. While this arrangement
made motion difficult, it allowed us to conduct a preliminary investigation of the
feasibility of transferring simulated shape change to a physical system. In future
implementations, the manual inflation could be replaced by pressure regulators [31],
allowing the robot to approach the continuous control achievable in simulation.

To understand some of the trade-offs between design parameters, consider a spher-
ical pressure vessel in uniform free expansion:

p = 2E · ε · t
r

= 2E · ε · t0 · (1− δ)
r0 − ε

, (6.1)

where t0 [m] is the thickness of the pressure vessel, r0 [m] is the radius, ε is the linear
strain due to expansion, E [MPa] is Young’s modulus, and δ is the radial strain (which
is determined from ε and the material’s Poisson’s ratio). Note that each voxel can
push outward with a force proportional to the pressure. Examining Eq. 6.1, we see
that at a given strain rate and initial dimensions, the internal pressure scales linearly
with both thickness and modulus. Thus, when choosing thickness of voxels, there was
a tradeoff between weight and internal pressure: doubling the wall thickness doubled
weight, in exchange for doubled operational pressure.

The simulation.

beam
voxel1 voxel2

centerpoint
(particle)

Figure 6.3: Voxels are simulated by beams
(springs) and particles (masses).

To simulate the robot, we use the voxel-based
physics engine Voxelyze [95], which simulates
elastic voxels using two elements: particles and
beams. Particles have mass and rotational in-
ertia, and are connected on a cartesian grid by
spring-like beams (with translational and rota-
tional stiffness). For visualization and reference,
part of a voxel mesh is drawn around this struc-
ture such that each voxel has a single particle at
its center (Fig. 6.3).

Two adjacent voxels are connected, centerpoint to centerpoint (i.e., particle to
particle), by a single, shared beam. Material properties (e.g., volume and elasticity)
are specified at the particles but implemented as attributes of beams (e.g., their rest

103

length, and how easily they twist and stretch). Where two adjacent particles disagree
in their “desired” attributes of a shared beam, an average is taken.

A beam exits a voxel normal to, and in the center of, one of the voxel’s faces.
Although the mesh is drawn such that voxel edges bend around the underlying beam-
mass network (see, e.g., Fig. 6.1), a spherical envelope is used for collision detection,
thus approximating the spherical expansion of the physical voxels (with maximal
expansion occurring at the center of each face). For more details see [95].

The structure and shape of a robot.
The structure, S, of a robot is determined by the number and placement of voxels,
and simulated by the presence and absence of particles on a regular grid in the
workspace. Let the bit value vi denote the presence (vi = 1) or absence (vi = 0) of a
voxel at index i. The structure,

S = {i : vi = 1}, (6.2)

is thus a set of voxel coordinates.
The shape, S, of a robot is determined by the resting volume of each voxel,

which is expressed in simulation as the resting (or, equilibrium) lengths of the beams
connecting adjacent particles, and in reality as a resting pressure within each voxel
(though the exact pressure, pi, is not measured here). Let the floating point value bi
denote the beam rest length stored at the i-th simulated voxel. The shape,

Ssim = {bi : i ∈ S} ∼ Sreal = {pi : i ∈ S}, (6.3)

is thus a set of voxel resting volumes.
The robot has a quadrupedal predamage structure (Figs. 6.1a,f and 6.2) with

atmospheric voxel resting pressure, which is approximated by nominal beam rest
lengths of 1 cm. Damage removes structure (voxels) (Fig. 6.1b). Postdamage struc-
tural deformation—shape change—is executed by pressure changes in the remnant
structure (i.e., mutations in Sreal) (Fig. 6.1h-j) and approximated by local adjust-
ments in the remaining beam-mass network (i.e., mutations in Ssim) (Fig. 6.1c-e).
The mechanical structure and its resting shape are fixed prior to behavior during the
evaluation period (20 actuation cycles).

The controller and configuration of a robot.
The controllers continuously reconfigure the volume of a given mechanical structure
during the evaluation period. We here consider open loop control of ±0.5 cm3 volu-
metric change (±50% from nominal), at each voxel, with a phase offset relative to a
central pattern generator, for 4 sec.

104

Controllers are here encoded as neural networks that map the indices of voxels
in 3D space (Eq. 6.2) to a phase offset value, φi, between −2π and 2π. We chose
this particular encoding, which is commonly referred to as a Compositional Pattern-
Producing Network, or CPPN [221], because spatial regularities (in structure and
actuation) are known to facilitate locomotion. (For more details about this encoding,
see [42].)

The instantaneous configuration, C, of a robot is determined by an oscillating
adjustment to the volume (and thus pressure) of each voxel, centered around its
shape S. In simulation, rest lengths are periodically varying (f = 5 Hz) around their
baseline, bi , with constant amplitude (A ≈ 0.145 cm), but damped by ξ. Damping
prevents contracting voxels from overlapping by decreasing their oscillation amplitude
as their rest length approaches a lower bound of bi = 0.25 cm.

The instantaneous adjustment to the rest length of the i-th simulated voxel, at
time t, is thus:

ψi(t) = A · sin(2πft+ φi) · ξ(bi), (6.4)
where:

ξ(b) = min
[
1, 4b− 1

3

]
. (6.5)

The configuration,
Csim(t) = {bi + ψi(t) : i ∈ S}, (6.6)

is thus a cyclical adjustment in the rest length between adjacent simulated voxels
(implemented when computing the elastic force between them) throughout a structure
S with shape Ssim.

Although simple, open loop control has the ability to produce complex behaviors,
such as symmetrical and asymmetrical gaits (from patches of voxels that oscillate in
counter-phase), or propagating waves of excitation (from a sequence of voxels with
increasing or decreasing phase offsets). Indeed, it is well known that central pattern
generators in the mammalian spinal cord (and elsewhere in invertebrate systems)
produce the basic, rhythmic motor patterns of locomotion, such as stepping, inde-
pendently of sensory input [86].

The damage scenarios.
We here consider nine damage scenarios—we amputate: (i) half of a leg; (ii) one
entire leg, (iii) two adjacent legs, (iv) two diagonal legs, (v) three legs, (vi) all four
legs; (vii) one quarter of the robot’s body, (viii) one half of the body, and (ix) three
quarters of the body.

105

Figure 6.4: The various amputations applied in our experiments. The predamage robot (amputation =
‘none’) is shown for reference.

The recovery options.
Each damage scenario removes structure and breaks the robot’s functionality: the
robot loses voxels and its ability to walk. We here consider two options for function
recovery:

1. Controller readaptation. A new controller is optimized for locomotion with
the damaged structure, as in [27, 55]. The only parameter subject to (re)optimization
is the phase offset, φi, of each voxel.

2. Shapeshifting. The shape of the damaged structure is optimized for locomo-
tion with the existing controller. The only parameter subject to optimization
is the baseline rest length, bi, of each voxel.

The shape change.
The body is reshaped prior to behavior (i.e., before the controller is turned on),
analogous to a prenatal developmental stage. This is done by adjusting the robot’s
shape, S, as defined in Eq. 6.3. Then, behavior results from oscillations that are
symmetrically distributed about this shape (Eq. 6.6).

The same kind of neural network that encodes controllers (i.e, a CPPN) was also
used to encode the robot’s shape. However, the shape-encoding networks output a
rest beam length, bi, between 0.25 and 2 cm (instead of a phase offset, φi, between−2π
and 2π). Subject to the constraints outlined above, optimization searches for shape-
encoding networks that result in resting shapes that, when coupled with the original

106

open-loop controller (previously optimized for the undamaged robot), synergize to
recover forward movement.

The optimization algorithm.
Shapes and control policies are here optimized to displace the (simulated) robot in
any direction using Age-Fitness-Pareto Optimization [204], an evolutionary algorithm
that uses the concept of Pareto dominance and an objective of ‘age’ (in addition to
displacement) intended to promote diversity among candidate designs and prevent
premature convergence.

A trial is initialized with a population of 50 randomly-generated designs with age
zero. Every generation, the population is first doubled by creating modified copies
of each individual in the population (i.e., offspring, in which ‘age’ is set equal to
that of the parent), where modification occurs only to the encoding-network that
is currently being optimized (either that of φ or b). The age of each individual is
then incremented by one. Next, an additional random individual (with age zero) is
injected into the population (which now consists of 101 designs). Finally, selection
reduces the population to its original size (50 designs) according to the two objectives
of net displacement (maximized) and age (minimized): Starting with nondominated
designs (N = 0), successive Pareto fronts (containing designs dominated by exactly
N alternatives, for N = 1, 2, . . .) are kept in their entirety until doing so would
overfill the population past its original size; then, designs are selected one-by-one
with probability proportional to their net displacement. (The 51 unselected designs
are deleted.)

This process of random variation and directed selection is repeated for G gen-
erations, in which both the architectures and weights of the encoding networks are
optimized: Mutations add, modify or remove a particular vertex or edge. Where mod-
ification of an edge reweights it (within -1 to 1 bounds) by adding a value randomly
drawn from a normal distribution with mean zero and standard deviation 0.5. Vertex
modification swaps the node’s activation function with a randomly chosen function
in the set (adopted from [123]): sin(), abs(), square(), sqrt(abs()); and the negations
of those four.

6.3 Results
Prior to damage, twenty controllers were optimized (for G = 1500 generations) to gen-
erate forward movement in the simulated quadruped during an evaluation period of 4
sec (with numerical integration time steps of 0.000151 sec). Predamage displacement
ranged from 37 to 46 cm (6.2 - 7.7 body lengths).

107

In order to isolate the effect of shape change relative to that of controller adap-
tation, across a diversity of insult, the simulated robot is copied 9 ∗ 2 ∗ 20 = 360
times; once for each unique damage scenario (9 total), recovery option (2 total) and
controller (20 total) triplet. Each copy is thus given an optimized controller and re-
covery option, cut according to its particular damage case, and then reoptimized for
displacement (for G = 500 postdamage generations).

The performance recovered after damage.
Figure 6.5 plots mean relative performance (i.e., postdamage displacement as a frac-
tion of predamage displacement), with 99% bootstrapped confidence intervals, for the
two recovery options in each damage scenario.

There are two, independent recovery options: controller readaptation (control) and
shapeshifting (treatment). For each damage scenario, the data consist of two random
samples, a sample from the control population (20 independent trials, holding the
shape of the damaged structure fixed) and an independent sample from the treatment
population (20 independent shape optimization trials, holding the controller fixed).
On the basis of these samples we wish to investigate the presence of a treatment effect
that results in a shift of location (median). The null hypothesis is that of no treatment
effect; the samples can be thought of as a single sample from one population.

We used a distribution-free rank sum test (Wilcoxon, Mann and Whitney) for
the hypothesis of no treatment effect, with Bonferroni correction for nine compar-
isons. The corrected rank sum test and the 99% bootstrapped CIs (of the mean) are
in agreement. That is, statistical significance between shapeshifting and controller
adaptation, at the 0.01 level, can be correctly inferred, for each damage scenario, by
visual inspection of Fig. 6.5 (i.e., no overlap in the shaded confidence intervals here
implies rejection of the null hypothesis).

Overall, shape change was more successful (often better and never worse) than
controller adaptation. Interestingly, the proportion of fitness recovered was in some
cases higher than one. This could be due to a lack of volume conservation and the
possibility that larger robots simply run faster than small ones. However, many
robots recovered by reducing their overall volume (e.g., Figs. 6.7 and 6.8). Moreover,
controller adaptation also achieved higher-than-predamage performance in one case
(amp. = 2 adj. legs), and this phenomenon was also documented in [55] but not via
shape change.

To explicitly control for the effect of body size, we optimized the controller of
an otherwise identical quadruped that is twice the size of the original (Fig. 6.6).
Isometrically increasing volume did not affect speed: There was no significant differ-
ence in speed (at the 0.01 level) between the enlarged and original quadruped. This
is because the controller oscillations are added on top of (not relative to) the root

108

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
di

sp
la

ce
m

en
t

amputation = 1/2 leg amputation = 1 leg

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
di

sp
la

ce
m

en
t

amputation = 2 adj. legs amputation = 2 diag. legs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
di

sp
la

ce
m

en
t

amputation = 3 legs amputation = 4 legs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
di

sp
la

ce
m

en
t

amputation = 1/4 body amputation = 1/2 body

0 100 200 300 400 500
Generations since damage

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
di

sp
la

ce
m

en
t

amputation = 3/4 body

0 100 200 300 400 500
Generations since damage

Overall

shape change
controller adaptation
original (predamage)

Figure 6.5: Mean relative displacement (i.e., recovered performance) with 99% CIs, at each generation
(g) of reoptimization since damage occurred (g = 0).

109

0 250 500 750 1000 1250 1500
Generation

0

10

20

30

40

50

60

D
is

pl
ac

em
en

t
(c

m
)

original
2x orig. size
amp. = 4 legs

Figure 6.6: Mean displacement with 99% CIs of controller optimization in the predamage quadruped
isometrically enlarged to maximal volume, compared to shape optimization after amputation of all four
legs.

shape (Eq. 6.6). The enlarged robot has eight times the volume of the original, beam
length oscillations still have the same amplitude.

Despite the fact that control was optimized for the original quadruped, and
that amputation of all four legs removes 23% of the original volume and actuation
(Fig. 6.4), robots that recovered from this particular insult through shape change
(Fig. 6.1) move significantly faster than both the original and isometrically enlarged
quadrupeds (Fig. 6.6). It follows that the efficacy of shapeshifting is not due simply
to increased volume; rather, it is due to where and how the remnant structure’s shape
is deformed, which affects (e.g.) the robot’s posture and mass distribution, its points
of contact with the ground, and the storage and release of elastic strain energy, during
locomotion.

The found techniques of recovery.
We found that the optimizer discovered diverse recovery strategies through shape
change (Figs. 6.7-6.9), whereas controller readaptation often converged on the same
strategy. For example, with all four legs removed due to damage, the robot is reduced
to a cuboid, and the only viable locomotion technique found by controller readapta-
tion was crawling. During postdamage optimization, many of these robots evolved
crawling by peristalsis or in a manner that resembles the serpentine crawling of snakes
[4].

Deforming the structure, even in a random manner, tends to produce greater
frictional anisotropy which enhances peristalsis and serpentine crawling, and enables
yet simpler forms of movement such as two-anchor crawling [4].

Nevertheless, crawling is inefficient because of drag. Here, in many damage cases,
behavioral competence was recovered through shape changes that partially or com-

110

pletely (but, due to material constraints, never perfectly) regenerated missing legs.
Notably, when all four legs were amputated, recovery strongly converged on the
solution of regeneration, and the resulting designs were some of the fastest over-
all (Fig. 6.1). Note that the objective function does not assume or directly select for
legged locomotion.

Other amputations, however, can be beneficial, if they result in a shape that is
easier to efficiently control than the original: Prior to damage, the robot’s sagittal
silhouette resembles a Π. When two adjacent legs are amputated, the resulting Γ
shape, which initially falls forward like this Γ due to gravity, tends to rapidly surpass
predamage performance through controller readaptation alone, despite its diminished
size.

When only half of a leg was lost to injury, some robots contracted all of the
undamaged legs to recover a stable but shorter quadrupedal form. Others seemed to
simply regenerate the missing part through local volumetric expansion at the site of
damage: The stump was isometrically expanded into a leg that was the same length
as the original but much wider.

On closer inspection, however, many of those who regenerated a limb also made
various other compensatory shape changes away from the site of damage, such as
expanding and curving their spine. Thus even when damage is isolated to a small part
of the robot’s structure, global changes, in addition to local repairs, can sometimes
streamline recovery.

When damage was distributed across a wider portion of the body, a diversity of
solutions were discovered. For example, after the amputation of a quarter of the
robot’s body, the robot occasionally splayed out its pelvis to form a straighter and
faster shape (Fig. 6.7). And, after the amputation of three legs, some robots once
again grew replacements, but, because of other changes (e.g., a greatly expanded
back), the remaining “genuine” leg needed to be partially contracted and tucked
inward for balance (Fig. 6.10).

Figure 6.7: This damaged robot (amp. = 1/4 body) contracted its hips and expanded its pelvis to
recover function (youtu.be/UBvsR6tZf5c).

111

https://youtu.be/UBvsR6tZf5c

In the case where half of the robot’s body is removed, the undeformed structure
falls under gravity onto its side; one local optima was thus to crawl “facedown”. A
better strategy was found in which the robot could remain upright by using the two
remaining limbs as forelegs and expanding the stump to form a wide hind leg. An
equally proficient strategy was observed in which the robot diminished one or both
of its legs, expanded its spine, and moved longitudinally (Fig. 6.8).

Figure 6.8: Shape change in this damage case (amp. = 1/2 body) enabled upright, lengthwise movement,
instead of falling over (youtu.be/nfCaVZVBmKI).

There were many successful variations on this theme, but one of the best de-
signs in this case did the exact opposite: The robot expanded its remaining limbs to
their maximum volume, contracted its spine, and flipped over (once) to walk longi-
tudinally with the added momentum generated from large, swaying front and back
limbs (Fig. 6.9).

Figure 6.9: This damaged robot (amp. = 1/2 body) contracted its spine, expanded its limbs,
and flipped over onto its back to walk lengthwise and exploit the elastic properties of its new arms
(youtu.be/WwYdSnuJBBA).

However, after the most extreme insult, when all but a quarter of the robot is
lost, there is insufficient material to regenerate legs or execute other more extreme
shape changes. Neither recovery option cultivated (visually) appreciable gains in
fitness. Yet, while this case removes 71% of the original volume it is significantly less
deleterious to controller optimization than amputating the four legs, which removes
just 23% of the original volume. Insult is thus a matter of kind, not degree.

112

https://youtu.be/nfCaVZVBmKI
https://youtu.be/WwYdSnuJBBA

Figure 6.10: After losing three legs to injury (amp. = 3 legs), the former quadruped is reduced to a
monopedal structure (a), the shape of which was then optimized for locomotion speed, resulting in an
expanded spine, the folding-inward of the remnant predamage leg, and the “regeneration” of the three
missing legs (c-e). This simulated strategy was then realized in two implementations using pneumatically-
actuated, cubic elastomer bladders. The purple robot (f-j) consists of two layers of drip-molded silicone;
the blue robot (k-o) consists of a single layer, and is thus less stable but more deformable. A single air
inlet here yields the rudiments of appropriate shape change, but pressure oscillations in this setup did not
yield locomotion (youtu.be/A2KTGhCFxK8).

The transferal of recovery strategies to reality.
To investigate the potential for directly transferring recovery strategies from simula-
tion to reality, we aimed to transfer the overall shapes that are pictured in Figs. 6.1
and 6.10. In these particular cases, the optimizer found shapes with contiguous sec-
tions of voxels actuated to similar levels. Thus, we here examine the one-actuator
case, in which the voxels with the largest rest volumes—the top layer of (6× 6 = 36)
voxels and the two corner voxels just below the top layer, on each corner of the torso
(8 in total)—were connected to the same air inlet. Voxels not hooked into the air line
were punctured to allow for passive deflation and contraction of the robot, mimicking
the simulated robot’s ability to contract voxels by decreasing the rest lengths bi.

The purple robot adequately expands the top layer of voxels in both cases (Figs. 6.1j
and 6.10j), but fails to reach the overall target shapes drawn in Figs. 6.1e and 6.10e.
Although further increasing pressure did indeed lead to larger deformations, the outer
voxels inflate farther than interior ones, limiting the maximum viable actuation pres-
sure. The thinner voxel walls of the blue robot exacerbated this issue (Fig. 6.10k-o),
but their increased flexibility enabled a more faithful transferal of overall surface

113

https://youtu.be/A2KTGhCFxK8

curvature. Another limitation we discovered was friction. Fully realizing the target
shape in Fig. 6.10e requires the robot to drag its leg inward across the floor, tuck-
ing it under its body; but the silicone leg often stuck to the surface, preventing the
prescribed maneuver in reality.

The silicone design and 1-axis rotational molding technique are still quite promis-
ing. Even when inflated at high enough pressures to make the outer voxels approxi-
mately spherical (Fig. 6.10o), the voxels did not rupture. To achieve more consistent
expansion of interior and exterior voxels, the later should be inflated at a lower pres-
sure than the former. By incorporating strain sensors [250] and closed-loop control
in future, the robot could correct for this variation on the fly. By actuating different
voxels at different pressures, and enabling active contraction in addition to expansion,
a much wider range of simulated shapes could be attained in reality.

6.4 Discussion
In this paper, a new approach to robot damage recovery has been proposed. Instead
of presenting the remnant shape of the damaged robot to optimization as fixed, we
enable optimization to change this shape as the essential part of the recovery process.
In doing so we realized a machine that recovered more function than an otherwise
equivalent system that could adapt its controller but not deform its shape.

In future work we will improve the transferal of simulated morphing machines to
physical ones using existing sim2real methods [21, 27, 55, 104, 127, 230] adapted ap-
propriately to meet the additional transferal demands dictated by soft materials [149].
We will also generalize our optimization method such that control and shape readap-
tation can be combined as dictated by the form of damage, predamage structure of
the robot, and its task environment.

Biological regeneration.
In past work, rigid-bodied robots have been venerated for their ability to “adapt
like animals” [27, 55]. These machines, which were constructed from undeformable
metals and hard plastics, automatically learned to control their bodies in spite of
missing or broken legs. But when an animal loses one or more of its legs to injury, it
does not adapt by merely searching for a new mental representation of behavior that
successfully maps onto the damaged body. Rather, they often fundamentally deform
their damaged “hardware” into something more controllable.

Evidence for this abounds. A famous example is the congenitally two-legged goat
described by Slijper [217]: an otherwise normal goat which was born without forelegs
adopted an upright posture and learned to walk on its hind legs alone. In addition

114

to enlarged hind legs, striking changes in morphology were documented, including
a greatly elongated gluteal tongue and an innovative arrangement of small tendons,
a narrowed pelvis, an oval (rather than V-shaped) thoracic cross-sectional shape, a
curved spine, and an unusually large neck [249]. The animal’s body resembled that
of a kangaroo more closely than that of a normal goat.

Other animals can regenerate. The planarian flatworm can be cut into many
pieces (the record is 279) all of which grow back to a full organism, regenerating not
just tail and head, but eyes and the complete nervous system [159]. Vertebrates, such
as frogs, also display the capability of regenerating limbs, jaws, eyes and a variety of
internal structures [32]. Humans too (especially children) are sometimes capable of
fingertip regeneration after distal phalange amputation [105].

Mechanisms of biological regeneration.
Several of the mechanisms by which organisms achieve these forms of self-editing of
their own anatomy pose design challenges and future research directions for robotics.

First is the ability to harness the behavior of low-level components (cells) towards
a specific large-scale goal-state: salamanders can regenerate whole limbs, eyes, tails,
ovaries, and other organs [151], but growth and remodeling ceases when a correctly
shaped and sized organ is complete [186]. Second is the flexibility and robustness
of systems under novel conditions. For example, tadpoles whose facial organs are
experimentally placed in abnormal configurations will undergo novel rearrangements
to still give rise to normal frog faces during metamorphosis [239], showing that the
genome encodes not a hardwired set of movements for each organ but rather specifies
a machine that can remodel toward the same target morphology from a variety of
unexpected starting states. Thus, it is critical to understand and exploit the ability
of evolution to give rise to hardware that is well-adapted to the normal environment
but also retains significant plasticity [225].

Third is the fact that during regeneration, the tissues making growth and morpho-
genesis decisions are themselves being drastically rearranged: thus, the computational
control circuitry is itself the object of the deformation actuators, forming a closed
loop in which information is reliably processed in a medium that is constantly chang-
ing [185]. Finally, the remarkable robustness of morphological computation extends
to information learned within the lifetime of the organism [25]. Butterflies, which re-
sult from a caterpillar brain that is almost completely dissolved during metamorpho-
sis, still remember information learned during the caterpillar stage [24]. Flatworms,
which regrow their entire heads, still remember information they learned prior to
decapitation [53, 212].

Attempts to implement these capabilities in artificial systems (whether robotic or
via synthetic biology) are likely to enrich not only engineering technology, but also

115

to feed back to the biological sciences and biomedicine. The current understanding
of computation in biological tissues has numerous gaps, which are only likely to be
filled by attempts to build these capabilities from the ground up [110].

Metamorphosing machines.
It has been shown here that robots, too, are not only capable of regenerating limbs,
but that such deformation can manifest by selecting for function recovery alone,
instead of a target legged shape.

However, this ability largely depends on the material with which robots are made,
for even if morphology is free to change in rigid bodies, the ways in which such change
can occur are limited at best. In [28], robots used a combination of rotary and linear
actuators to slowly angle appendages downward and extrude them outward, thus
simulating limb growth. In softer machines, there are more ways for morphology
to change: The soft robot used here was able to locally deform its geometry to
bend, twist, compress or expand throughout its body. Its also possible, although not
investigated here, for soft robots to change their material properties, such as stiffness,
through (e.g.) granular jamming [34, 123].

The possibility of this latter change highlights the inadequacy of the name “soft
robot”. When a granular jamming robot jams (removes excess internal air to become
stiff) does it cease to be a soft robot? What if it never unjams? For the purposes
of damage repair, the most important property of soft robots is not that they are
soft per se, but that they may easily change their structural and material properties
(possibly including stiffness). One can envisage future “rigid” nanobots capable of
self-assembling into a protean metamachine that can rearrange so as to regrow a
lost part; but that day seems far off, whereas soft robots, capable of continuous
morphological change, are already becoming a reality.

The future of this line of work promises not just new robotic systems but also
new science. Shapeshifting robots, recast as scientific tools, can shed new light on
old biological questions about developmental plasticity, regeneration and homeosta-
sis [121, 122, 142]. And, symmetrically, new theories about the mechanisms that lie
at the heart of such questions can be physically instantiated and optimized in a new
breed of useful, autonomous and adaptive machines.

116

Chapter 7

Living Protean Machines

Appeared as:
S. Kriegman et al., A scalable pipeline for designing reconfigurable organisms. Pro-
ceedings of the National Academy of Sciences (PNAS) 117 (4) 1853–1859 (2020).

Significance:
Most technologies are made from steel, concrete, chemicals and plastics, which de-
grade over time and can produce harmful ecological and health side effects. It would
thus be useful to build technologies using self-renewing and biocompatible materials,
of which the ideal candidates are living systems themselves. Thus, we here present
a method that designs completely biological machines from the ground up: comput-
ers automatically design new machines in simulation, and the best designs are then
built by combining together different biological tissues. This suggests others may
use this approach to design a variety of living machines to safely deliver drugs in-
side the human body, help with environmental remediation, or further broaden our
understanding of the diverse forms and functions life may adopt.

Abstract:
Living systems are more robust, diverse, complex, and supportive of human life than
any technology yet created. However, our ability to create novel lifeforms is currently
limited to varying existing organisms or bioengineering organoids in vitro. Here we
show for the first time a scalable pipeline for creating functional novel lifeforms: AI
methods automatically design diverse candidate lifeforms in silico to perform some
desired function, and transferable designs are then created using a cell-based con-
struction toolkit to realize living systems with the predicted behaviors. Although
some steps in this pipeline still require manual intervention, complete automation in
future would pave the way to designing and deploying unique, bespoke living systems
for a wide range of functions.

117

https://www.pnas.org/content/117/4/1853

7.1 Introduction
Most modern technologies are constructed from synthetic rather than living materials
because the former have proved easier to design, manufacture, and maintain; living
systems exhibit robustness of structure and function and thus tend to resist adopting
the new behaviors imposed on them. However, if living systems could be contin-
uously and rapidly designed ab initio and deployed to serve novel functions, their
innate ability to resist entropy may enable them to far surpass the useful lifetimes of
our strongest yet static technologies. As examples of this resistance, embryonic devel-
opment and regeneration reveal remarkable plasticity, enabling cells or whole organ
systems to self-organize adaptive functionality despite drastic deformation [23, 239].
Exploiting the computational capacity of cells to function in novel configurations
suggests the possibility of creating synthetic morphology that achieves complex novel
anatomies via the benefits of both emergence and guided self-assembly [110].

Currently, there are several methods underway to design and build bespoke living
systems. Single-cell organisms have been modified by refactored genomes, but such
methods are not yet scalable to rational control of multicellular shape or behavior
[103]. Synthetic organoids can be made by exposing cells to specific culture condi-
tions but very limited control is available over their structure (and thus function)
because the outcome is largely emergent and not under the experimenter’s control
[203]. Conversely, bioengineering efforts with 3D scaffolds provide improved control
[169, 176, 231], but the inability to predict behavioral impacts of arbitrary biological
construction has restricted assembly to biological machines that resemble existing
organisms, rather than discovering novel forms through automatic design.

Meanwhile, advances in computational search and 3D printing have yielded scal-
able methods for designing and training machines in silico [46, 214] and then manu-
facturing physical instances of them [27, 38, 140]. Most of these approaches employ
an evolutionary search method [164] that, unlike learning methods, enables the design
of the machine’s physical structure along with its behavior. These evolutionary de-
sign methods continually generate diverse solutions to a given problem, which proves
useful as some designs can be instantiated physically better than others. Moreover,
they are agnostic to the kind of artefact being designed and the function it should
provide: the same evolutionary algorithm can be reconfigured to design drugs [63],
autonomous machines [38, 140], metamaterials [101], or architecture [163].

Here, we demonstrate for the first time a scalable approach for designing novel
living systems in silico using an evolutionary algorithm, and we show how the evolved
designs can be rapidly manufactured using a cell-based construction toolkit. The
approach is organized as a linear pipeline that takes as input a description of the
biological building blocks to be used and the desired behavior the manufactured
system should exhibit (Fig. 7.1). The pipeline continuously outputs performant living

118

Figure 7.1: Designing and manufacturing reconfigurable organisms. A behavioral goal (e.g., max-
imize displacement), along with structural building blocks (here, contractile (red) and passive (cyan)
voxels), are supplied to an evolutionary algorithm. The algorithm evolves an initially random population
and returns the best design that was found. The algorithm is rerun 99 times starting with different
random populations, generating a diversity of performant designs in silico (A). Performant designs are
then filtered by their robustness to random phase-modulation of their contractile cells (B), constructed
in vivo using developing Xenopus cardiomyocyte and epidermal cell progenitors (C-F), and placed on the
surface of a petri dish where their behavior is observed and compared to the design’s predicted behavior.
Discrepancies between in silico and in vivo behavior are returned to the evolutionary algorithm in the
form of constraints on the kinds of designs that can evolve during subsequent design-manufacture cycles
(G). Concurrently, tissue layering and shaping techniques are modified such that realized living systems
behave more like their virtual model.

systems that embody that behavior in different ways. The resulting living systems
are novel aggregates of cells that yield novel functions: above the cellular level, they
bear little resemblance to existing organs or organisms.

7.2 Results
The pipeline is organized as a sequence of generators and filters (Fig. S1). The first
generator is an evolutionary algorithm that discovers different ways of combining the
biological building blocks together to realize the desired behavior. A population of
random designs are first created. Then, each design is simulated in a physics-based
virtual environment and automatically assigned a performance score. Less performant
designs are deleted and overwritten by randomly-modified copies of more performant

119

Figure 7.2: Designing reconfigurable organisms. For a given goal, 100 independent evolutionary
trials were conducted in silico (A-C). Each colored line represents the velocity of the fastest-moving
design within its clade. Each genome (D) dictates anatomy and behavior by determining where and
how voxels are combined, and whether they are passive (cyan) or contractile (red; E). Genomes simulate
a developmental process and are described in more detail in Sect. S4. The differing behavioral traces
produced by a design (F) are a result of randomly perturbing the actuation of each contractile cell during
each evaluation period. The behavioral traces all originate from the same position (blue) but diverge
over time until their final destination (red). G: During one evaluation period, after settling under gravity
for 1 sec, compressed and expanded contractile voxels are shown in red and green respectively. Because
the genotype is scale-free, the anatomical resolution of any design can be increased (H) while preserving
geometry (but not necessarily behavior). When all evolutionary trials complete, the most performant
design from each trial is extracted (I). The robust design passed to the next stage of the pipeline moves,
on average, more rapidly (red curve) than the average speed of the other 99 designs (gray curve).

designs. Repeating this process yields populations of performant and diverse designs
(Fig. 7.2).

As there are likely to be many differences between the simulated and targeted
physical environments, performant designs are passed through a robustness filter
which only allows passage of designs that sustain the desired behavior in the face
of noise (Sect. S7). Previous work has shown that noise resistance in simulation is
a simple and effective predictor of whether a design will maintain its behavior when

120

instantiated physically [107]. The surviving noise-resistant designs are then passed
through a build filter (Fig. S4) which removes designs that are not suitable for the
current build method (Fig. S6) or unlikely to scale to more complex tasks in future
deployments. The manufacturability of a design depends on the minimal concavity
size that will persist in aggregations of developing stem cells, which tend to close
small gaps in their collective geometry (Fig. S7). The scalability of a design depends
on its proportion of passive tissue, which provides space for future organ systems or
payloads (Fig. S13).

The designs that successfully pass through the build filter are then built out of
living tissues. Pluripotent stem cells are first harvested from blastula stage Xenopus
laevis embryo, dissociated, and pooled to achieve the desired number of cells. Follow-
ing an incubation period, the aggregated tissue is then manually shaped by subtrac-
tion using a combination of microsurgery forceps and a 13 micron wire tip cautery
electrode, producing a biological approximation of the simulated design. Further,
contractile tissue can be layered into the organism through the harvesting and em-
bedding of Xenopus cardiac progenitor cells, an embryonically derived cell type which
naturally develops into cardiomyocytes (heart muscle) and produces contractile waves
at specific locations in the resultant shaped form (Fig. S6).

The final product of this procedure is a living, three-dimensional approximation
of the evolved design, which possesses the ability to self-locomote and explore an
aqueous environment for a period of days or weeks without additional nutrients.
These organisms are then deployed into their physical environment, and resultant
behavior, if any, is observed (Fig. 7.3). Behaviors are then compared against those
predicted by their simulated counterparts to determine whether or how well behaviors
transferred from silico to vivo (Fig. 7.4).

After several organisms have been deployed and observed, it is likely that they
exhibit varying amounts of the desired behavior. Common patterns among the suc-
cessful systems are distilled down into constraints and supplied back to the evolu-
tionary algorithm, which now evolves designs that are not just performant but also
conform to the constraints (Sect. S6). This increases the success likelihood of sub-
sequent design-to-deployment attempts. Reconfigurable organisms were evolved to
exhibit four different behaviors: locomotion, object manipulation, object transport,
and collective behavior (Sect. S10). To achieve this, the pipeline was employed four
times.

Locomotion.
To obtain a diverse population of designs, 100 independent trials of the evolutionary
algorithm were conducted (Fig. 7.2A-C), each starting from a different set of initial
random designs. During each trial, designs were selected based on net displacement

121

Figure 7.3: Manufacturing reconfigurable organisms. (A) Aggregation of pluripotent blastula cells
harvested from Xenopus laevis embryos. (B) Shaping results in three-dimensional representations of the
evolved in silico designs. (C) Layering of cardiac progenitor cells results in contractile cardiomyocyte
tissue at specific locations, visualized by red fluorescent lineage tracer. (D) Time-lapse imaging of self-
locomotion in an aqueous environment. (E) Emergent behavior of debris aggregation by an individual
within the environment and (F) by groups of biological representations over a 24h period (Sect. S10.4).
Scale bars indicate 500 µm for A-E and 5 mm for F, respectively.

122

achieved during a 10 second period (with randomized, phase-modulated contraction,
cycling at 2 Hz). Additional selection pressures were applied to maintain diversity
by inducing competition within and between unique genetic lineages within each trial
[204], yielding unique ecological dynamics (Sect. S5). The most fit designs at the end
of each trial were extracted (Fig. 7.1A) and passed through the robustness and build
filters (Fig. S4). During this filtering process, buildable and scalable designs that
retain rapid locomotion during random perturbations are selected for manufacture
(Figs. 7.3 and S6).

Cilia, which produce locomotion through metachronal waves (the generation of
sequential and directional propagating waves, as opposed to synchronized beating),
were not modeled in silico and were suppressed in vivo through embryonic Notch ICD
mRNA microinjection [58]. Thus, any displacement results from contractile cardiac
muscle tissue that pushes against the surface of the dish. This simplifies the simula-
tion and its comparison to the realized organism. Trajectories of deciliated designs
are compared in silico and in vivo, in two orientations (upright and inverted 180◦
about the transverse plane) thus isolating the impact of the designed morphology on
the difference between predicted and realized behavior. For at least one design, the
data suggest that the desired behavior successfully transferred when it was upright
but not when inverted (Fig. 7.4). More specifically, the upright organisms’ direc-
tion of movement matched that of the in silico design under random perturbations
(p<0.01; details in Sect. S9), and inverting the design significantly reduced its net
displacement both in silico (p<0.001) and in vivo (p<0.0001). This suggests that
successful transference did not result by chance but rather due to the design itself.

Object manipulation.
When the environment is strewn with particulate matter, motile designs sponta-
neously aggregated the external objects both in silico (Fig. S10) and in vivo (Figs. 7.3F
and S11). More precise object manipulation can be selected for as an explicit goal,
such as specifying target areas from which debris should be cleared, or target objects
to discard. The latter goal was implemented and primitive end-effectors evolved in
simulation (Fig. S12).

Object transport.
Some designs evolved for displacement reduced hydrodynamic drag (see Sect. S6) via
a hole through the center of their transverse plane. This more complex topology was
realized in vivo (Fig. S13) but was not layered with contractile tissue. In simulation,
this emergent feature can be exapted as a pouch to store and transport objects. In
a subsequent round of evolution, pouches were explicitly incorporated as a design

123

Figure 7.4: Transferal from silico to vivo. The first design selected for fabrication and specific hypoth-
esis testing (A) was the most robust yet stable and energy-efficient configuration of passive (epidermis;
green) and contractile (cardiac; red) tissues found by the evolutionary algorithm. The design was eval-
uated 25 times for 1 minute of simulation time, resulting in 25 movement trajectories (pink curves in
C). Six reconfigurable organisms were built which embodied this design (e.g., B) (Sect. S9). Three were
evaluated four times and the other three were evaluated five times for 10 minutes each (27 blue curves
in C). The organisms’ direction of movement matched the design’s predicted direction of movement
(p<0.01; details in Sect. S9). To determine whether the organisms’ movement was a result of chance or
due to the design’s evolved geometry and tissue placement, geometry and tissue distribution was altered
by rotating the design 180◦ about its transverse plane (D) and evaluating it another 25 times in silico
(pink curves in F). Each of the six organisms were likewise inverted (E): four were evaluated five times
while the remaining two were only evaluated once (22 blue curves in F). Inverting the design significantly
reduces its net displacement (p<0.001), as did inverting the organisms (p<0.0001).

constraint, and the new goal of maximizing the distance of the carried object was
employed. This yielded evolved object transport in silico (Fig. S13).

124

Collective behavior.
Multiple designs can be placed in the same environment, yielding collective behavior
[248] (Figs. S10 and S11). Several such behaviors predicted in silico were observed
in vivo. For instance, two designs often collide, form a temporary mechanical bond,
and orbit about each other for several revolutions before detaching along tangen-
tial trajectories (Fig. S10). This phenomenon is more pronounced when cilia are
not inhibited on the organisms: individuals frequently become entangled with their
neighbors, often changing partners across an observation (Figs. 7.3F and S11).

7.3 Discussion
Although simulation and design of rigid structures and machines has been possible
for some time, only recently has it become computationally tractable to simulate the
combined behavior of arbitrary aggregates of soft components with differing material
and actuation properties [95]. As shown for the first time here, such fine-grained
simulations can be embedded in evolutionary search methods to discover designs that
can be instantiated in biological, rather than artificial materials.

The resulting organisms embodied not only the structure (Fig. S8) of evolved
in silico designs but also their behavior (Fig. 7.4), despite modeling cardiomyocyte
temporal coordination as random noise. As a side effect of selection pressure for lo-
comotion, derandomizing morphologies evolved: evolutionary improvement occurred
through changes in overall shape, and distribution of the passive and contractile cells,
to collectively derandomize the global movement produced by the random actuation.
In biology, such robustness to random noise is ubiquitous; one example is the ability
of many species to adapt to wide ranges of diversity in cell size and number as starting
points in their embryogenesis [52].

The behavioral competence of individual cells, and the propensity of cells to co-
operate in groups, facilitate functional morphogenesis in novel circumstances. The
lifeforms presented here, despite lacking nervous systems, following novel developmen-
tal trajectories, and being composed of materials from different tissues, nevertheless
possess these self-organizing properties. These properties synergize with and support
the behavior they were designed to exhibit. For instance, although signaling be-
tween cardiomyocytes was not enforced, emergent spontaneous coordination among
the cardiac muscle cells produced coherent, phase-matched contractions which aided
locomotion in the physically-realized designs. Also, some of the designs, when com-
bined, spontaneously and collectively aggregate detritus littered within their shared
environment (Figs. 7.3F and S11). Finally, reconfigurable organisms not only self-
maintain their externally-imposed configuration, but they also self-repair in the face
of damage, such as automatically closing lacerations (Fig. S9). Such spontaneous

125

behavior cannot be expected from machines built with artificial materials unless that
behavior was explicitly selected for during the design process [124].

This approach admits future generalization and automation because the generator-
and-filter architecture enables modular addition, removal, or reorganization of ele-
ments in the pipeline for rapid design and deployment of new living systems for new
tasks in new domains. For instance, a filter could be added which pre-emptively
steers the evolutionary algorithm away from portions of the design space known to
contain designs that cannot be realized physically [117]. Or, inspired by the hierar-
chical organization of deep neural networks [254], individual designs output by one
generator could become the building blocks input to the next generator, thus enabling
hierarchical design and re-use of cellular assemblies, and assemblies of assemblies.

Beyond the applications reported here, the generality of this approach is as of yet
unknown. But, advances in machine learning, soft body simulation, and bioprinting
are likely to broaden the potential applications to which it may be put in future.
Applications could be numerous, given the ease of misexpressing novel proteins and
synthetic biology pathways and computational circuits in Xenopus cells [237]. Given
their non-toxicity and self-limiting lifespan, they could serve as a novel vehicle for in-
telligent drug delivery [181] or internal surgery [135]. If equipped to express signaling
circuits and proteins for enzymatic, sensory (receptor), and mechanical deformation
functions, they could seek out and digest toxic or waste products, or identify molecules
of interest in environments physically inaccessible to robots. If equipped with repro-
ductive systems (by exploiting endogenous regenerative mechanisms such as occurs
in planarian fissioning), they may be capable of doing so at scale. In biomedical set-
tings, one could envision such biobots (made from the patient’s own cells) removing
plaque from artery walls, identifying cancer, or settling down to differentiate or con-
trol events in locations of disease. A beneficial safety feature of such constructions is
that in the absence of specific metabolic engineering, they have a naturally limited
life-span.

These methods, reagents, and data extend the breadth of model organisms avail-
able for study by designing living systems that are as orthogonal as possible to ex-
isting species, yet capable of being built from existing cell types. By enabling a
computationally-guided interplay between emergent and designed processes, this plat-
form facilitates studies of the relationship between genomes (in our case, wild-type
Xenopus laevis), the resulting body-plan, and its behaviors in diverse environments.
Thus, such reconfigurable organisms could serve as a unique model system facilitating
work in the evolution of multicellularity, exobiology, artificial life, basal cognition, and
regenerative medicine. If equipped with electrically-active cells and selected for cogni-
tive or computational functions [13], such designed systems may similarly broaden our
understanding of how intelligence can be instantiated in living as well as non-living
systems.

126

7.4 Materials and Methods

Evolutionary Design.
Designs (Sect. S2) were evolved inside a physics engine (Sect. S3) as reconfigurable
aggregations of passive and contractile voxels (Fig. 7.1). On the first pass through
the pipeline using the goal behavior of locomotion, we simulated designs on land
and allowed the evolutionary process to finely tune their actuation. This resulted
in highly-performant but non-transferable designs (Fig. S2) with powerful, bounding
gaits that are not obtainable in vivo with the current build method (Sect. S8). These
gaits were characterized by timeframes (on average, 47% of the gait cycle) in which
no part of the in silico design was in contact with the simulated ground plane. In
vivo, however, the deciliated organisms always kept part of their ventral surfaces in
contact with the surface of the dish due to negative buoyancy.

These discrepancies were rectified by adding constraints into the pipeline in the
form of adjustments to environmental and actuation settings, which were altered as
follows. On the second pass, the fidelity of the simulated environment was increased
by incorporating first-order hydrodynamics: the modified environment consisted of
an infinite plane submerged in water, which was approximated by decreasing the
coefficient of gravitational acceleration (increasing buoyancy) and applying a drag
force to each voxel face on the design’s surface (Sect. S6). Secondly, actuation was
randomized: contractile cells were revised to have random phase-offsets from a central
pattern generator (a sine wave with frequency 2 Hz). More specifically, each voxel
of a randomly-configured design (one of which was injected into the population at
each generation; Sect. S5) was assigned a random phase offset, which was held fixed
in its descendants (the entire clade). Mutations switched each voxel to be either
present or absent, and, if present, either passive or active (contractile), but the original
phase offset, at every location in the workspace, was hardcoded. This reduced the
dependence on precisely-timed excitation, and promoted the discovery of more robust
mechanical structures (Fig. S3).

The behavior of designs generated on the second pass better matched the behavior
of the actual living systems: on average, designs were in contact with the ground
plane for 93.3% of their evaluation period, compared to just 52.7% on the first pass
(Sect. S6).

Robustness Filter.
The most performant designs (Fig. 7.1A) were sorted by their robustness to random
perturbations in their actuation. Phase offsets stored in the genotype were mutated
by adding a number that was drawn randomly from a normal distribution with mean

127

zero and standard deviation s = 0.4π (which is 40% of the −π/2 to π/2 range of valid
phase-offset values). This hyperparameter was selected to be large enough to scramble
the original phase-offset value without being so large as to push all mutations up
against the ±π/2 bounds. Designs that maintained the highest average performance
across this actuation noise were passed, one by one, in order of their robustness
ranking, to the build filter.

Build Filter.
The most robust designs are evaluated by their manufacturability under the current
build method, which layers contiguous tissue regions sequentially (Fig. S6). The mini-
mal concavity was examined by producing organisms with progressively smaller shape
deformations, then determining which persist across the lifespan of the organism,
and which close due to tissue contraction, leading to loss of concavity. Preliminary
work determined that concavities with a width of 100µm or greater (12% of total
body length) produced stable long term deformations suitable for biological building
(Fig. S7).

Additionally, the build filter removes designs that are more than 50% muscle,
in order to reserve sufficient design space to add specialized cells for purposes other
than locomotion, including sensory input, metabolism, memory, biosensors, etc. Also,
contractile tissue incurs a much higher metabolic cost compared to non-muscle tissue
(the human heart consumes approximately 1mM ATP per second; [190]). Thus,
limiting this tissue type increases the total lifetime of transferred designs. The most
robust designs that satisfy these selection criteria (Fig. S4) are passed through the
build filter to the next stage of the pipeline: the realizability generator.

Realizability Generator.
Reconfigurable organisms were created using Xenopus embryos as donor tissue un-
der methods approved by the Institutional Animal Care and Use Committee and
Tufts University Department of Laboratory Animal Medicine under protocol number
M2017-53.

Fertilized Xenopus laevis eggs were reared in a 0.1X, p.H. 7.8, Marc’s Modified
Ringers solution (MMR) using standard protocols and staged according to Neiuwkoop
and Faber [171, 216]. For shaping experiments, animal caps were manually cut at
St. 9 using surgery forceps (Dumont, 11241-30 #4) and transferred to Calcium and
Magnesium free medium for five minutes (50.3 mM NaCl, 0.7 mM KCl, 9.2 mM
Na2HPO4, 0.9 mM KH2PO4, 2.4 mM NaHCO3, 1.0 mM EDTA, pH 7.3). The
outer ectoderm layer was manually removed and discarded, while the inner layer
was agitated until fully dissociated (cells are this stage are largely pluripotent, but

128

differentiate into ectoderm without further intervention). Material from five animal
caps was pooled and transferred to a welled dish containing 0.75x MMR. After 24H
at 14◦C, the spherical re-aggregate was moved to a clean 1% agarose coated dish
containing 10ml 0.75x MMR and 5µl gentamicin (ThermoFisher Scientific, 15710072).
Forty eight hours after tissue re-aggregation the resulting tissue (now fated to become
specific epidermal cell lineages including ionocytes, small secretory cells, and goblet
cells), was shaped using a combination of microsurgery forceps and a MC-2010 micro
cautery instrument with 13 micron wire electrodes (Protech International Inc., MC-
2010, 13-Y1 wire tip cautery electrode). Tissue was reshaped as necessary for three
hours to create the desired anatomical outcome, after which it was moved to a clean
1% agarose coated dish containing 10ml 0.75x MMR and 5µl gentamicin and raised
at 14◦C.

For contractile movement experiments, cohorts of Xenopus embryos were microin-
jected with one of two synthetic mRNAs at the four cell stage using standard protocols
[171]. mRNA for the fluorescent lineage tracer tdTomato [246] and the multiciliated
cell inhibitor Notch ICD [16, 58] was synthesized using mMESSAGE transcription
kits (TheromoFisher Scientific, AM1340). Injections were performed in 3% Ficoll
solution using a pulled capillary to deliver 370pg of mRNA for each transcript to
all four cells. tdTomato microinjected embryos were reared for at 22◦C while Notch
ICD injected embryos were reared at 14◦C. Twenty four hours after injection, stage 10
Notch ICD injected embryos were moved to a 1% agarose coated petri dish containing
0.75x MMR, and animal caps were manually cut using surgery forceps as above. In
addition, stage 23-24 tdTomato injected embryos were transferred to the same dish
and the presumptive heart-field was excised with the outer layer of ectoderm then re-
moved and discarded. Presumptive heart tissue was then placed between two Notch
ICD injected animal caps, and the three layers were allowed to heal for one hour
at 22◦C. Following healing, the tissue was moved to clean 1% agarose coated dish
containing 10ml 0.75x MMR and 5µl gentamicin and raised at 14◦C. For shaping,
resultant tissue was sculpted as above using a combination of microsurgery forceps
and a MC-2010 micro cautery instrument.

Transferability Filter.
All samples were imaged live in 0.75x MMR at 20◦C using a Nikon SMZ-1500 micro-
scope equipped with both top and substage illumination. Still Images were captured
on a QImaging Retiga 2000R CCD camera and videos were captured using a Sony
IMX234 at a sample rate of 30fps. XY movement tracks were extracted for each run
using Noldus Ethovision 14 software, and smoothed using a one-dimensional gaus-
sian filter (Sect. S9.1). The tdTomato lineage tracer was imaged using a standard
TRITC filter cube and fluorescent light source to verify cardiac muscle cell location,

129

and GFPIII signal was imaged with a standard FITC filter cube to verify epidermal
cell location (Sect. S9.2).

7.5 Supplementary Methods

S1. The source code:
github.com/skriegman/reconfigurable_organisms

S2. The design space.
This subsection gives bounds on the number of designs that can be built in a voxel-
based workspace.

A distinct configuration of exactly N congruent cubes (voxels) connected face-to-
face is known as a polycube. With N=2, there is just a single configuration: a 2-by-1
column (or dicube). But there are two perpendicular rotations: if one cube is resting
on the ground, we can add the second on top or on the side.

Rotations of the same configuration can be treated as equivalent, or not. Poly-
cubes are called “real” if equivalent under rotation, and “fixed” if not. With N=3,
there are two real polycubes (tricubes), and 15 fixed. With N=4, there are eight real
(tetracubes), and 86 fixed. As N increases, the number of polycubes grows exponen-
tially. With N=16 cubes, for instance, there are on the order of 1010 real polycubes
and 1012 fixed polycubes [1].

But this assumes that all cubes are identical. Here, the design space consists of
polycubes composed of two cube types (passive and contractile), with any N, that
fit inside an 8×8×7 bounding box. Many polycubes with N>7 won’t fit inside this
workspace. And with N=8×8×7=448, there is only one polycube geometry that fits,
but there are still 2448 = 7.27× 10134 possible combinations of passive and contractile
voxels that could be used to build the polycube.

Because the designs here are functional polycubes, their uniqueness depends on
the behavioral goal. For locomotion in any direction away from the origin on a sur-
face plane, designs can yield different behavior when inverted (Fig. 7.4), but the same
behavior when the design is rotated about the vertical axis (just facing a different
direction). Because there are three tissue options (none, passive, and contractile) at
each point in the workspace, there are 3448 = 5.63 × 10213 possible configurations,
though some are isomorphic translations after reducing to a single (the largest) poly-
cube.

130

https://github.com/skriegman/reconfigurable_organisms

S3. The physics engine.
This subsection briefly describes the physics of the in silico environment. For more
details, see [95].

Experiments were performed using the voxel-based physics engine Voxelyze [95].
Voxels were connected to each other on a regular grid to form a contiguous geometry:
a polycube. Interactions between adjacent voxels were modeled as flexible beams
(critically damped; zeta=1) according to Euler-Bernoulli beam theory. A Coulomb
friction model was applied to voxels in contact with the ground surface plane. Volu-
metric actuation resulting from contractile cells was simulated by oscillating the rest
length between adjacent actuating voxels, in all three dimensions, when computing
the elastic force between them. Additionally, a collision detection system ensured
that the organisms did not self-penetrate. If a pair of surface voxels are detected
to collide (intersect), a temporary beam (underdamped; zeta=0.8) was constructed
between the two until the collision is resolved. A time step of 0.0032 seconds was used
for numerical integration. Each design was allowed to settle under gravity for 312
timesteps (one second) before an evaluation period of 3125 timesteps (10 seconds),
resulting in a total simulation time of 11 seconds.

S4. The encoding.
This subsection defines the genetic search space evolution operates in. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/networks.py

S4.1. Genotype networks. Each configuration is genetically encoding using a Com-
positional Pattern-Producing Network, or CPPN [221], that maps the spatial coordi-
nates of a 3D cartesian lattice to a single value indicating whether there is material
at that location, and, if so, whether it is a contractile or passive cell. The genotype
encoding is thus scale-free: A given genotype network can be mapped to arbitrary
resolution coordinate space (Figs. 7.2H and S18).

We chose this particular encoding because it tends to generate spatial regularities
in structure, which are known to facilitate locomotion [49]. In short, CPPNs are a
special class of networks that use various activation (or interaction) functions that
output regular patterns, such as sine waves and parabolas (instead of using only
a single sigmoid or ramp function). CPPNs were originally proposed [221] as an
abstraction of gene expression and embryonic development (rather than of neurons
and brains), and we employ them as such here.

Input/output. The coordinates of each voxel are specified by their cartesian coor-
dinates (x, y, z) and radial distances from the center of the lattice workspace (here,
8-by-8-by-7). These four coordinates (in addition to a bias term set equal to 1) are
taken as input to the network. The inputs connect to (interact with) various regula-

131

https://github.com/skriegman/reconfigurable_organisms/blob/master/networks.py

tory and structural genes (vertices) by weighted edges (with real-valued scalar weights
in the range -1 to +1) that multiply the input by the corresponding weight. Regula-
tory and structural genes sum all incoming weighted edges as input for their interac-
tion function, which is here taken to be any of the following: sin(), abs(), square(),
sqrt(abs()); and the negations of those four. The output expressions of regulatory
genes are reweighted and passed onward to interact with additional regulatory genes
(hidden nodes) or else with one of two structural genes (output nodes), whose output
is thresholded at zero to determine (express) material presence and type, respectively.
In some experiments (Figs. S2 and S14), an additional, independent CPPN was used
to determine the phase-offset (of open-loop volumetric actuation) at each voxel.

Mutation. Both the architectures and weights of these networks are evolved: mu-
tations add, modify or remove a single randomly-selected vertex or edge. Offspring are
created by performing six kinds of mutations (add vertex/edge, remove vertex/edge,
modify vertex/edge), each of which is applied with probability 1/6. If none are se-
lected (which occurs with probability (5/6)6 = 0.33), one of the six is randomly
chosen and applied. If a mutation is neutral (i.e., the resulting phenotypic structure
is unchanged), another mutation is applied; after 1500 unsuccessful attempts at a
non-neutral mutation, the 1500 neutral mutations are accepted. After mutation, the
network is pruned of any erroneous edges and vertices that are not connected to the
main graph (details about the evolutionary algorithm can be found in Sect. 5.1).

Initialization, hyperparameters. Networks are initialized by fully connecting the
input layer to the output, and normalizing the inputs (the coordinates of the workspace)
to be between 0 and 1. Then, ten random vertices are added. Next, ten randomly-
selected pairs of unconnected vertices are attached by a new edge, the weight of which
is drawn from a uniform distribution between -1 and 1. (If the new edge creates a
cyclic graph, erase it and retry, 999 times. If 1000 failed attempts occur, terminate.)
After these additions, five randomly selected edges are removed. Then, 100 edges
are randomly selected (with replacement) and their weights are mutated (serially) by
adding a value drawn from a normal distribution with mean zero and standard devia-
tion, s = 0.5, clipping the new weight to be between -1 and 1. (Neutral mutations are
permitted during this initialization process.) Finally, 100 vertices are likewise selected
with replacement, and their interaction functions are replaced by functions randomly
chosen from the set ±sin(), ±abs(), ±square(), ±sqrt(abs()). Hyperparameters were
adopted from [124].

S4.2. Morphological complexity. In this work, we have demonstrated the evolution
of a CPPN encoding toward various geometries (Fig. S3) and topologies (Fig. S13)
capable of open-loop locomotion and object manipulation in a simulated environment.
However, these shapes tend to be relatively compact and simple, lacking more complex
structures, such as branching limbs.

132

Previous work linked morphological complexity resulting from CPPN-genotypes
with environmental complexity [11]. We likewise observed the optimization of environment-
specialized morphologies, such as the evolution of rudimentary end-effectors that hold
an external object in place during its manipulation (Fig. S12).

To demonstrate the flexibility of the encoding to achieve more complex morpholo-
gies as dictated by the task environment, we optimized CPPNs for a single evolution-
ary run to generate passive structures that match target shapes (Fig. S15). To do
so, we used the same evolutionary algorithm and hyperparameters (detailed below in
Sect. 5) with a modified objective function: Performance was defined as the Hamming
distance between binary matrices of the target and CPPN-output shapes (instead of
locomotion velocity).

In a separate experiment in which designs were challenged to throw an object
(Sect. 10.3), we successfully evolved functional limbs by including an objective to
maximize the design’s surface-area to volume ratio, in addition to an objective for
thrown object distance (Fig. S14). It would be of interest to explore, in future work,
the genetic encodings and behavioral selections pressures that indirectly select for
complex organism geometries.

S5. Evolutionary design.
This subsection outlines the evolutionary algorithm and its objective functions, ana-
lyzes the algorithm in smaller solution spaces, and compares evolution to a gradient-
based approach.

S5.1. The algorithm. A standard evolutionary algorithm was employed: Age-
Fitness-Pareto Optimization, or AFPO [204]. AFPO uses the concept of Pareto
dominance and an objective of “age” (in addition to performance) intended to promote
diversity among candidate designs and prevent premature convergence. “Age” is a
clade-level attribute that counts the number of generations a clade has existed in the
population: Each design can trace its ancestral roots back to a randomly configured,
parentless individual, which was injected into the population, with age zero, at some
previous generation. Thus the age roughly corresponds to the amount of search time
spent in a particular area of design space.

One hundred independent evolutionary trials were conducted, each with a unique
random seed (which is here set equal to the run number, 1-100), culminating in
a unique run champion: the most performant design found, according to the goal
function (Figs. S2 and S3).

Each trial is initialized with a population of 50 randomly-configured designs with
age zero. Every generation, the population is first doubled by creating modified
copies of each individual in the population (offspring have the same age as their par-

133

ent). The age of each individual is then incremented by one. Next, an additional
randomly-configured individual (with age zero) is injected into the population (which
now consists of 101 designs). Finally, selection reduces the population down to its
original size (50 designs) according to the two objectives of performance (maximized)
and age (minimized). That is, starting with the youngest and most performant de-
signs, which are by definition nondominated, successive Pareto fronts are kept in their
entirety until doing so would overfill the population past its original size (50 designs),
at which point designs are added stochastically with probability proportional to their
performance. This process of random variation and directed selection is repeated for
1000 generations.

A third objective was used in addition to performance and age: number of con-
tractile voxels (minimized). This additional objective was added to ensure organisms
had sufficient non-functional volumes that could be replaced by future non-actuating
building blocks which may be required for specific tasks, such as wavelength percep-
tion (opsin-like detection), or metabolic pathways necessary for nutrient uptake and
consumption. In spite of this objective, none of the run champions from the first pass
for locomotion utilized passive voxels (Fig. S2).

Similarity to other architecture search algorithms. As mutations not only tune the
parameters of an existing (parent) network, but can also add and remove genotype
network structure (edges and vertices), the evolutionary algorithm is performing what
is known as “architecture search” [69]. Many evolutionary approaches to architecture
search exist, such as NEAT (NeuroEvolution of Augmenting Topologies; [222]). How-
ever, NEAT evolves artificial neural networks, whereas we are evolving bodyplans.
More specifically, we are evolving CPPNs (genotype; Sect. 4.1) that encode body-
plans (phenotype). HyperNEAT (Hybercube-based NeuroEvolution of Augmenting
Topologies; [223]) is an extension of the NEATmethod which evolves CPPNs that typ-
ically, as the name suggests, encode neural network connectivity patterns. However,
HyperNEAT has also been used to evolve CPPNs that encode soft robot bodyplans
[42]. We chose to evolve CPPNs using AFPO instead of HyperNEAT because the
former is a much simpler algorithm than the latter. Despite the fact that it is more
complex, it would be interesting to apply HyperNEAT to designing reconfigurable
organisms; it could be that the additional machinery yields more performant designs.

Source code: github.com/skriegman/reconfigurable_organisms/blob/master/tools/algorithms.py

S5.2 Measuring performance. In all experiments, designs are allowed to settle un-
der gravity for one second before the evaluation period begins. Just before the evalu-
ation period starts, the initial center of mass of the design is recorded as (x0, y0, z0).

For locomotion, the performance score was net displacement of the design’s center
of mass, in terms of euclidean distance: the square root of (x−x0)2 +(y−y0)2, where
(x, y) is the final position of the design on the ground plane at the end of an evaluation

134

https://github.com/skriegman/reconfigurable_organisms/blob/master/tools/algorithms.py

period of 10 seconds. For object manipulation (Sect. 10.1), transport (Sect. 10.2),
and expulsion (Sect. 10.3), the object’s net displacement was tracked instead of the
design’s.

It is important to note that the formulation of the performance objective function
must in some cases be refined in order to realize desired behavior. For example,
an early version of the objective function for object transport (Fig. S13) intended
to reward how far an object could be carried. However, because the lightweight
object never touched (i.e., penetrated) the simulated ground plane, the optimizer
discovered designs that dragged the object along the ground plane. This was corrected
by constraining the object to be completely surrounded by tissue (Sect. 10.2).

S5.3 Runtime. Each evolutionary trial optimized a population of 51 designs on a
dual-processor, 12-core Intel E5-2650 v4 (i.e., 24 threads). No trial took less than 18
wall-clock hours (432 CPU hours) or more than 22 wall-clock hours (528 CPU hours)
to evaluate 1000 generations of evolutionary improvement. The runtime varies be-
cause the algorithm is stochastic: some designs have more voxels than others and
thus require more CPU-time. Because evaluating designs in simulation is the com-
putational bottleneck, the algorithm is readily parallelizable: doubling CPU threads
halved the wall-clock time (10 hours when tested using two Intel E5-2650 v4s).

S5.4 Algorithm analysis. It is difficult to know what the optimal design is for large
search spaces. So, we investigated a search space in which it was possible for us, given
our computational resources, to determine exactly what the optimal design is (for a
given random actuation pattern). We started with a 2×2×2 workspace and identified
the optimal design for five different, random actuation patterns (Fig. S17A). The evo-
lutionary algorithm found the optimal design for all five actuation patterns in 9129
evaluations (179 generations). In the slightly larger, 3×2×2 workspace, the evolution-
ary algorithm found the optimal design for all five actuation patterns in 4284 evalua-
tions (84 generations) (Fig. S17B). In a 3×3×2 workspace, the algorithm took much
longer, requiring 113,628 evaluations (2228 generations) to find the optimal design for
all five actuation patterns (Fig. S17C). We could not determine the optimal design at
3×3×3, so we terminated the determination of optimal designs at this point. Source
code: github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_EA.py

S5.5 Comparison to a gradient-based approach. We employed an evolutionary al-
gorithm because we have considerable experience using this particular algorithm to
evolve soft robots in previous work. However, there are many forms of constrained
optimization. One of the most common is stochastic gradient descent. So, we applied
a stochastic gradient-based method (Parameter-exploring policy gradients; [205]) di-
rectly to the design problem. Typically the policy that is optimized is a vector of neu-

135

https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_EA.py

ral network weights (floating-point values). Here, the policy is a static arrangement of
the discrete building blocks (ternary values). The algorithm samples the space of de-
signs, evaluates their performance in silico, and estimates the gradient using a popular
stochastic gradient descent optimizer (Adam; [112]). This algorithm yielded a less per-
formant design (4.6 body lengths per minute; Fig. S16) that failed all three condition-
als of the build filter (Sect. 7.2). Source code, which was adapted from [88], is available
here: github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_SGD.py

The same population size as the evolutionary algorithm was used; all other hy-
perparameters were left at their default values as reported in (46). The policy vector
of floating-point values was discretized to determine tissue type at each point in the
workspace: values below -0.05 were left empty, values above 0.05 were encoded as pas-
sive voxels, and values in between -0.05 and 0.05 were encoded as contractile voxels.
The two thresholds of -0.05 and 0.05 were set such that randomly-initialized designs
at the beginning of optimization contained all three tissue types (the initial stan-
dard deviation is 0.10 by default). This gradient-based algorithm quickly converges
to suboptimal designs, even in very small search spaces (Fig. S17). To combat this
premature convergence, we modified the algorithm to restart, every 1000 evaluations,
from a different random initialization.

After 10,000 evaluations of search in the 2×2×2 workspace, the policy gradi-
ent algorithm found the optimal design for two of the five, random actuation pat-
terns (40%). By restarting every 1000 evaluations, the modified algorithm was
able to find the optimal design for four out of the five actuation patterns (80%)
(Fig. S17A). In the 3×2×2 workspace, the algorithm did not find the optimal design
for any of the five actuation patterns (0%). Modified to restart every 1000 evalua-
tions, the algorithm found the optimal design for one of the five actuation patterns
(20%) (Fig. S17B). In the 3×3×2 workspace, we allowed optimization to continue
for much longer (140,000 evaluations), but the optimal design was not found for any
of the five actuation patterns, with or without restarts (Fig. S17C). Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_SGDre.py

S6. Updating design constraints.
This subsection describes how the design process is improved with feedback from the
behavior of manufactured organisms.

On the first pass through the pipeline using the goal behavior of locomotion, the
simulated environment consisted of an infinite plane and a gravitational acceleration
of −9.81 m/s2. Both the passive and contractile building blocks had a Young’s modu-
lus of 107 Pa, a Poisson’s Ratio of 0.35, and coefficients of static and dynamic friction

136

https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_SGD.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Algorithm_Analysis_SGDre.py

of 1.0 and 0.5, respectively. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Locomotion_pass1.py

The contractile voxels were volumetrically actuated (±50% rest volume) at 5 Hz.
Although the cardiac tissue used to build reconfigurable organisms can only contract,
simulated actuation also expanded voxels in volume because this produces more force,
and thus faster locomoting designs in silico. We chose to call these voxels “contractile”
to help clarify the match with contractile tissue. Future design-manufacture cycles
of the pipeline could add a contraction-only actuation constraint in silico, however it
was not necessary for successful transferral of behavior (Sect. 9.1).

The phase-offsets of actuation for each voxel (from a global, sinusoidal signal) were
co-optimized with morphology, using two independent genotype networks (Sect. 4.1).
Designs evolved propagating waves of volumetric actuation, yielding rapid locomotion
via bounding gaits, with timeframes (on average, 47% of the gait cycle) in which no
part of the design was in contact with the simulated ground plane (Fig. S2). However,
when these designs were manufactured in vivo, they always kept part of their ventral
surfaces in contact with the surface of the dish due to negative buoyancy.

This discrepancy was rectified by adding the following constraints to the simulated
environment and actuation. On the second pass through the design pipeline, an
aqueous environment was simulated by decreasing the gravitational acceleration to
−0.1 m/s2, and applying a drag force to surface voxels, assuming a fluid density of
water (ρ = 1000 kg/m3) and a drag coefficient of C = 1.5 for each exposed voxel face.

Voxels were simulated with half the Young’s modulus (5× 106 Pa) and five times
the length scale of those used during the first pass of the pipeline. This allowed a
larger numerical integration timestep to be stable (see [95] for details), which greatly
reduced the required CPU time of each evaluation.

Actuation frequency was reduced to 2 Hz to remove momentum effects (which
are difficult to simulate accurately) and to better match the contraction rate of the
cardiac tissue (∼1 Hz). The phase-offset of each voxel was randomized instead of
optimized, which prevents designs from overfitting to a specific actuation policy. Each
randomly-configured design injected into the population (with age zero; see Sect. 5.1)
was assigned 448 phase-offsets, randomly drawn from a uniform distribution between
−π/2 and π/2, one value for every point (possible voxel location) in the 8×8×7
workspace. These phase-offsets were then hardcoded for the entire clade.

Evolutionary improvement within a clade thus occurred through changes in overall
shape, and distribution of the passive and contractile voxels, to collectively deran-
domize the global movement produced by the random actuation. This reduced the
dependence on precisely-timed actuation, which increased the likelihood of successful
transferal from silico to vivo. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Locomotion_pass2.py

137

https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Locomotion_pass1.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Locomotion_pass2.py

The surface contact behavior of designs generated on the second pass (Fig. S3)
better matched that of the actual living systems: On the second pass through the
design pipeline, run champions were, on average, in contact with the ground plane
for 93.3% of their evaluation period, compared to just 52.7% on the first pass. The
proportion of simulation time that designs are in contact with the ground was com-
puted by recording (100 times per second) whether or not the z position of any voxels
were penetrating the surface plane, using the following source code:
skriegman/reconfigurable_organisms/blob/master/data_analysis/Time_in_contact_with_ground.py

S7. Filtering evolved designs for manufacture.
This subsection describes how designs were filtered based on their performance in
silico, transfer potential, manufacturability under the current build method, and their
scalability to more complex tasks in future deployments.

S7.1. The robustness filter. The most performant designs (Fig. S3) were sorted by
their robustness to random perturbations in their actuation (Fig. S4). Each design
was then copied 20 times. The phase-offsets of the actuating voxels in each copy
were independently mutated by adding a number that was drawn randomly (with
random seeds 1-20) from a normal distribution with mean zero and standard deviation
s = 0.4π (which is 40% of the −π/2 to π/2 range of valid phase-offset values). This
hyperparameter was selected to be large enough to scramble the original phase-offset
value without being so large as to push all mutations up against the ±π/2 bounds.
Designs that maintained the highest average performance across this actuation noise
were passed, one by one, in order of their robustness ranking, to the build filter.
Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Robustness_Filter.py

S7.2. The build filter. The most robust designs were evaluated by their manu-
facturability under the current build method, which layers contiguous tissue regions
sequentially, one on top of the other, with each layer filling the x,y plane (Fig. S6;
Sect. 8.2). Thus, the first criterion a design must meet for fabrication is that it must
contain contiguous tissue regions that fill the dorsal and ventralmost x,y planes with
just one of the two tissue types (i.e., no mixing within the dorsal and ventral layers).
The design can be rotated in 3D space to satisfy this criterion (e.g., without mixing
within the anterior and posteriormost layers).

Secondly, designs cannot contain arbitrarily small gaps in their geometry, because
they are made of differentiating cells which will adhere to neighbors if they come into
contact with each other. The minimal concavity was examined by producing organ-
isms with progressively smaller shape deformations, then determining which persist

138

https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Time_in_contact_with_ground.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Robustness_Filter.py

across the lifespan of the organism, and which close due to tissue adherence/con-
traction, leading to loss of concavity. Preliminary work determined that concavities
with a width of 100µm or greater produced stable long term deformations suitable
for biological building (Fig. S7). As the organisms typically have body diameters in
the range 750±100µm at the time of initial cutting and 850±100µm after four days
of healing, the minimal concavity width is 12%-14% of total body length.

Because larger designs can travel farther in the same amount of time as smaller
ones, the in silico designs tend to fill at least one horizontal dimension of the 8×8×7
workspace (Fig. S3), resulting in a maximum length of 8 voxels. This equates to a
minimal concavity width of a single voxel (1/8=12.5%). Thus, the second criterion
for fabrication is that the design cannot contain gaps less than two voxels wide.

Finally, more complex tasks can require room for payloads (Fig. S13; Sect. 10.2)
or, in future, the addition of specialized cells for purposes other than locomotion,
including sensory input, metabolism, memory, biosensors, etc. Also, contractile tissue
incurs a high metabolic cost (compared to non-muscle tissue), which decreases the
total lifetime of transferred designs. Thus, the third criterion for fabrication is that
the design must be mostly (more than 50%) passive. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Build_Filter.py

S8. Manufacturing reconfigurable organisms.
This subsection summarizes the current build method.

S8.1. Cilia-driven organisms. During preliminary experiments aimed at testing
the feasibility of in vivo designs, the manufactured organisms lacked contractile tissue
and were instead propelled by cilia present on the surface of the body. These cilia-
propelled spheres were manufactured in exactly the same way as the cardiomyocyte-
driven organisms used to measure transfer success (Sect. 8.2), except the Notch
intracellular domain (Notch-ICD) was not overexpressed through synthetic mRNA
microinjection (this step inhibits multiciliated cell formation) prior to building. How-
ever, all of the ciliated organisms moved when released into the aqueous environment
(albeit in unpredictable directions and at unpredictable speeds). Thus, measuring
transferability between in vivo and in silico designs could produce false positives. In
addition, the accurate modeling of swimming and fluid dynamics proved to be chal-
lenging in simulation, so we altered our build method to produce contractile based
movement.

S8.2. Cardiomyocyte-driven organisms. Contractile organisms were generated us-
ing two separate approaches (detailed in Methods and Materials). In the first, pre-
sumptive cardiomyocyte and epidermal cells were extracted from embryos and dissoci-

139

https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Build_Filter.py

ated in calcium free magnesium free medium. Dissociated cells were then transferred
to a 1mm depression and the tissues were layered according to the desired in silico
design. After two days of further development, final shaping was performed using
a microcautery device and surgical forceps. For the second build method, the pre-
sumptive cardiomyocyte and epidermal tissues were not dissociated to the individual
cell level. Instead, layers of tissue were stacked on top of one another, with the
cardiomyocyte layers in the center. Shaping occurred in exactly the same manner,
using a combination of microcautery and surgical forceps. Both the dissociation and
tissue layering method were employed during the course of the study, however, we
chose to focus on the latter for movement-based assays. While this method results in
lower accuracy of tissue placement (as specific numbers of cells could not be layered
with precision), it significantly reduces total build time, allowing the investigator to
produce approximately ten times the amount of organisms per unit time compared
to the dissociation method.

S9. Measuring transfer success.
This subsection explains how the behavior and structure of manufactured organisms
were compared to those of the in silico design.

S9.1. Transferal of behavior. The design was evaluated 25 times, resulting in 25
movement trajectories. Each time, the evolved set of phase-offsets for the actuating
voxels was different, resulting in slightly different behavior (Fig. 4). This was done
by adding to each of the original phase-offsets, a value that was drawn randomly
from a normal distribution with mean zero and standard deviation s = 0.4π (which
is 40% of the −π/2 to π/2 range of valid phase-offset values). This hyperparameter
was selected to be large enough to scramble the original phase-offset value without
being so large as to push all mutations up against the ±π/2 bounds.

The numerical integration step size was 0.0032 seconds. For each random actu-
ation pattern, the design was allowed to settle under gravity for 312 timesteps (one
second), and then evaluated for 18750 additional timesteps (60 seconds), resulting in
a total simulation time of 61 seconds.

Six reconfigurable organisms were built which embodied this design. They were
imaged live for 10 minutes in 0.75x MMR at 20◦C using a Nikon SMZ-1500 microscope
equipped with both top and substage illumination. Videos were captured using a Sony
IMX234 at a sample rate of 30fps. Behavioral trajectories were extracted using Noldus
Ethovision 14 software. Each trajectory was then smoothed using a one-dimensional
gaussian filter with a kernel standard deviation of 30 seconds.

Statistical analysis. In measuring transfer success, we made three comparisons

140

(controlling for fals discovery rate; (47)):

1. movement heading in vivo relative to in silico;
2. net displacement in vivo upright relative to inverted; and
3. net displacement in silico upright relative to inverted.

For movement heading, the data consist of the dichotomous outcomes: either
the designed organism moved in the predicted direction, or not. Although organisms
could move in any direction (0 to 360◦ relative to the predicted heading) we discretize
the space into four directions of possible movement (forward, backward, left, right),
only one of which is considered a success (forward). We have six realizations of the
design in vivo (six separate organisms) that were each reset to the origin four times.
As resets to the origin are clearly not independent observations, n = 6. That is, we
have six independent Bernoulli trials with probability of success q. Because there
are four directions of possible movement, the null hypothesis is that organisms move
in the predicted direction with probability q = 1/4. All instances moved in the
predicted direction, though one organism (and its four resets) was more or less sessile
(with small amounts of movement in the predicted direction). The most conservative
use of the data is to consider only five of the six realizations to be successful, and
thus p = 4.6 × 10−3. Controlling for false discovery rate (47), the null hypothesis is
rejected at the 0.01 level of significance.

For net displacement, the data consist of paired replicates: anatomically-upright
(“pretreatment”) and anatomically-inverted (“posttreatment”) observations from the
same individual design. We are concerned with a shift in location (i.e., the median of
the distribution of net displacement) due to inverting the design (the application of
the “treatment”). We use a distribution-free signed-rank test (Wilcoxon). The null
hypothesis asserts that each of the distributions for the differences (posttreatment
minus pretreatment observations) is symmetrically distributed about 0, corresponding
to no shift in location due to the treatment (inverting the design). In silico, p =
9.7× 10−5. Controlling for false discovery rate, the null hypothesis is rejected at the
0.001 level of significance.

In vivo, four organisms were evaluated five times while upright, and five times
inverted. However, the recording equipment failed during one of the upright runs
(Trial 2) for three of the organisms. This trial was simply removed from considera-
tion for these three (i.e., displacement while inverted in Trial 2 was discarded where
corrupted). The two other organisms were evaluated five times upright, but only
once while inverted since these organisms generated little to no displacement when
inverted, and motion tracking resources were limited. The single evaluation while in-
verted was therefore used as the posttreatment observation for each of the six upright
(pretreatment) observations. In vivo, p = 2.6× 10−5. Controlling for false discovery
rate, the null hypothesis is rejected at the 0.0001 level of significance.

141

In fact, only one of the six organisms was observed to produce appreciable forward
movement while inverted. This anomaly was likely due to the cardiac tissue being
layered deeper (more dorsally) than the other designs, resulting in a small amount of
deformation on the dorsal surface.

Source code for reproducing the in silico behavioral trajectories: github.com/skriegman/

reconfigurable_organisms/blob/master/data_analysis/Transferal_from_silico_to_vivo.py

Source code for the statistical analysis: data_analysis/Statistical_Analysis.py

S9.1. Transferal of structure. The structure of organisms was compared to that of
the in silico design using 2D images and Hausdorff distance. To quantify the struc-
tural error (Fig. S8), lineage labeled organisms were created by harvesting tdTomato
expressing cardiac progenitor tissue from one set of donor embryos, and GFPIII ex-
pressing passive epidermis tissue from a second set of donor embryos. Donor tissue
was dissociated and transferred to 1mm concave wells, placing both cell types in pro-
portions and locations matching the in silico design. Two days later, the organism
was then sculpted to the desired shape, and imaged in multiple orientations using a
FITC filter set to visualize epidermal tissue (green) and a TRITC filter set to visual-
ize cardiac progenitor (red) tissue. Channels were then overlaid in ImageJ to create
the final composite image for analysis. K-means clustering was used to classify each
pixel as one of three tissue types: contractile, passive, or none.

The Hausdorff distance between in vivo and in silico pixels was calculated for
passive tissue only, then again for contractile tissue. The closest matching pixel (i.e.,
with the same tissue type) was found in silico for all in vivo pixels, and the closest
matching pixel was likewise found in vivo for all in silico pixels. The Hausdorff
distance is the largest such discrepancy between vivo and silico tissue coordinates, in
terms of euclidean distance in microns. A small Hausdorff distance indicates that for
every pixel in vivo there is a pixel of the same tissue type nearby in silico, and vice
versa. After measuring the Hausdorff distance for both tissue types, the larger of the
two is taken to be the structural error.

Formally, the Hausdorff distance for tissue type 1 is defined as:

H1 = max{ sup
s∈S1

inf
v∈V1

d(s, v), sup
v∈V1

inf
s∈S1

d(s, v) },

where S1 and V1 are the sets of in silico and in vivo pixels that were classified as
the first tissue type, and d(s, v) is the euclidean distance between pixels s and v.
Similarly, the Hausdorff distance for tissue type 2 is defined as:

H2 = max{ sup
s∈S2

inf
v∈V2

d(s, v), sup
v∈V2

inf
s∈S2

d(s, v) },

where S2 and V2 are the sets of in silico and in vivo pixels that were classified as the
second tissue type. The structural error is then: max(H1, H2).

142

https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Transferal_from_silico_to_vivo.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Transferal_from_silico_to_vivo.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Statistical_Analysis.py

Before these comparisons can be made, however, the in vivo and in silico images
need to be on a relatively consistent coordinate frame. Thus, images were auto-
cropped such that the edge of the design fills the frame. This is done by converting
each image to grayscale, and thresholding at 10/255 to create a binary image, thus
isolating the organism against the dark background. Contours are then automatically
drawn on the image by traversing the boundaries of each transition between black
and white to find closed loops (each of which is a contour). A bounding box is drawn
around the largest contour (by area), and the rest of the image is trimmed off. Finally,
the cropped images were resized (downsampled) to a constant resolution (50×50).

A grid search was then performed to find the 3D perspective with the lowest
structural error. The design was lowered/raised in elevation angle in the z plane, and
spun around by azimuth angle in the x,y plane, in increments of 10◦ in each dimension.
Then the 3D plot was saved as a 2D image and rotated again in increments of 10◦.

Since the tissue regions are classified via unsupervised clustering (and were thus
assigned arbitrary labels), we take the regions with the largest overlap to be of the
same type. This introduces the possibility of similarly shaped but different tissue
types aligning to achieve the lowest structural error for a given in vivo perspective,
but this did not occur in our experiments. However, the rotation with the lowest
structural error did not always respect the organism’s anteroposterior alignment (the
design was sometimes “facing” the opposite direction). So we restricted rotations of
the design to better match the range of perspectives captured across the four images
of the organism: the grid search was constrained to elevation angles between -40 and
60◦, azimuth angles between -120 and -60◦, and rotations of the resulting 2D image
between 0 and 30◦.

The average structural error achieved across all four images was 323 microns (38%
of the organism’s largest diameter) (Fig. S8).

Note that this preliminary method does not account for distortions resulting from
flattening a 3D object to a 2D image (e.g., the moon terminator illusion). Future work
will aim to capture many images of the organism from different perspectives, and use
them to virtually reconstruct a 3D model for direct structural comparison. Source
code: github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Structural_Error.py

S10. Applications.
This subsection summarizes four additional goal behaviors in which organisms can
interact with an external object or other organisms.

S10.1. Object manipulation. Introducing a single object to the environment, and
altering the goal function to track the external object, instead of the design, yielded
object manipulation—block pushing—in silico (Fig. S12). The new behavioral goal

143

https://github.com/skriegman/reconfigurable_organisms/blob/master/data_analysis/Structural_Error.py

input into the pipeline was to maximize displacement of a 2×2×2 voxel object during
an evaluation period of 30 seconds. This extended evaluation time of 30 seconds
(instead of 10 sec) prevented the strategy of simply falling onto the object and hitting
it forward ahead of the (often immobile) design. All other constraints from the
second pass for locomotion were left in place: passive and randomly-actuating building
blocks were reconfigured within an 8×8×7 workspace, and evaluated in a floored
aqueous environment. Sixteen independent evolutionary runs were performed. In
some designs, a primitive end-effector—a notch in the corner of the body—evolved
to hold and manipulate the object as it was pushed along the floor. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Manipulation.py

S10.2. Object transport. Some designs evolved for locomotion were hollow and
could thus, in theory, be exapted to internally store the 2×2×2 voxel object as cargo,
rather than push it externally. This realization led to the new goal of maximizing the
euclidean distance of a carried object. Using a slightly larger, 10×10×9 workspace,
a mask was placed on the design requiring the morphology to house the 2×2×2
object within a 4×4×4 voxel pouch. This yielded evolved object transport in silico
(Fig. S13). All other constraints were identical to the second pass for locomotion
(the evaluation period was reverted back to 10 sec). Sixteen evolutionary runs were
performed.

Some modifications of the objective function were required to realize object trans-
port. An early version of the objective function did not use masking to force the
object to be inside the design at the center of the workspace. The object was
instead free to be positioned anywhere in the workspace. Designs were then re-
warded by net object displacement, with the stipulation that the evaluation pe-
riod would be terminated if and when the object was detected to penetrate the
floor. This is a standard way to ensure that a simulated object is touching the
ground. However, given the buoyancy of the aqueous environment, the lightweight
object would often touch but not penetrate the ground. What evolved were mostly
variants that pushed or dragged the object across the ground plane. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Transport.py

S10.3. Object expulsion. A non-locomotion-based goal was also supplied to the
pipeline: maximize thrown object distance. In other words, evolve a catapult [40]. We
dropped a 2×2×2 voxel object (the projectile) from one voxel length above the 8×8×7
workspace, but no designs evolved to catch and throw the object forward. So we
reverted actuation to be finely tuned (rather than randomized) by co-evolving phase-
offset alongside structure, as in the first pass for locomotion. But, the evolved designs
were relatively compact and lacked limbs for proper throwing. So, we induced direct
selection pressure for limbs by incorporating an additional objective that maximized

144

https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Manipulation.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Transport.py

surface-area to volume ratio. In three of five evolutionary trials, limbs evolved which
the design employed to throw the object (Fig. S14). However, all of the designs
capable of throwing objects, failed to pass through the build filter (conditional B1 of
the flowchart in Fig. S4) because they were composed entirely of muscle. Additionally,
these designs rely on finely-tuned actuation, which is unlikely to transfer from silico
to vivo. Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Expulsion.py

S10.4. Collective behavior. Multiple designs can be placed in a single environment
instead of a single one. This can be done by simply relaxing the constraint which takes
only the largest connected component to be the design. Alternatively, individually
evolved designs can be evaluated together at a later stage in the pipeline. The latter
method was implemented: five of the fastest locomoting designs (Fig. S3) were placed
in the same environment amongst a grid of particulate matter in the form of 2×2×1
voxel particles, yielding spontaneous collective behavior and particle aggregation in
silico (Fig. S10). Source code:
github.com/skriegman/reconfigurable_organisms/blob/master/exp/Collective_Behavior.py

Spontaneous collective behavior and aggregation of external particles also occurred
in vivo when multiple (10 to 15) organisms were placed together at the center of a
single petri dish containing carmine dye (Sigma-Aldrich C1022-5G) (Fig. S11). A
stock solution of carmine dye was created at a concentration of 0.01g per 10ml 0.75x
MMR and vortexed for 10 seconds. Individual working solutions were then created in
1% agarose coated polystyrene petri dishes by diluting the stock 1:10, again in 0.75x
MMR, for a final concentration of 0.001g per 10ml. Dishes containing the working
solution were housed under an imaging microscope and allowed to settle for four hours
at 22◦C, creating a layer of particulate dye on the surface of the dish.

As a control, organisms were withheld from the dish, and the dye did not self
aggregate after 1 or 24 hours.

S11. Scaling the pipeline.
This subsection describes how future design-manufacture pipelines may improve to
scale the complexity and competence of reconfigurable organisms.

In the work reported here, actuation in silico was constrained to be random
(Sect. 6) because it is not yet understood how to model the dynamics of cells in
novel configurations and environments. This proved sufficient for some open-loop
tasks, but not for others which required finer control (Sect. 10.3). Before a general
understanding of the relationship between cell signaling and behavior is realized, be-
havioral biases of cells, or correlations between cells in certain configurations could be

145

https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Object_Expulsion.py
https://github.com/skriegman/reconfigurable_organisms/blob/master/exp/Collective_Behavior.py

captured and distilled down into new constraints. However, in order to accurately in-
corporate the constraints of more realistic dynamics, the resolution of the simulation
might need to be improved in future experiment designs.

Designs were constrained to 8-by-8-by-7 resolution (448 voxels) but the cardiomyocyte-
driven organisms contained 5,000 cells (Fig. S18). The resolution of the workspace
could be increased, but the required CPU-time scales with O(n+ s2), where n is the
total number of voxels, and s is the number of voxels that lie on the surface of the
body, which are used to detect and resolve collisions. Such computational bottle-
necks can be circumvented by incorporating an additional generator-filter pair along
the pipeline that draws individuals from an evolving population of low-resolution de-
signs (and/or low-resolution task environments) to evaluate at higher-resolution. In
effect, the low-resolution population would serve as a computationally-cheaper surro-
gate model for higher-resolution designs and environments. However, it is currently
not known how to guarantee that behavior generated in low resolution design space
can be preserved when mapped onto higher resolution spaces.

The CPU-based physics simulator used in this work rendered repeated evaluation
of very high resolution designs, or the collective behavior of a swarm in silico compu-
tationally intractable. This was because the forces and positions of each cell (voxel)
within each simulated design were calculated sequentially rather than simultaneously.
CPUs have tens of threads on which they can carry out independent processes in par-
allel, though most physics simulators use just a single thread. GPUs, in contrast,
contain hundreds of thousands of threads.

A GPU-accelerated version of the physics engine used throughout this thesis was
recently released [141]. This raises the possibility of simulating reconfigurable or-
ganisms at the cell level, and exporting the design directly to a 3D bioprinting/cell-
printing device containing multiple dispensers (each loaded with a bio-ink of an in-
dividual cell type), which could in principle exactly recapitulate the design in vivo.
However, much work remains to adapt existing technologies for this purpose.

Video S1: Designing reconfigurable organisms.
Link: youtu.be/VVd_MjHm_tc

Video S1 first previews successful output of the pipeline: the champion design
of run 52 in silico and its realization in vivo. Next, the input—the goal (move into
the left-hand side of the screen, as fast as possible) and building blocks (passive and
contractile voxels)—are introduced. The building blocks are shown in pairs (two
passive, cyan blocks are connected and positioned on the floor next to a separate pair
of contractile, red/green blocks) to better illustrate the actuation dynamics. At 0:30,
three random configurations of the building blocks are shown in action. These three

146

https://youtu.be/VVd_MjHm_tc

configurations were the best designs (of 50 random designs) found during generation
zero of three independent evolutionary runs with goal behavior of net displacement.
One thousand generations later, the most robust design to pass through the build
filter—the champion of run 52—is selected for construction in vivo. At 1:14, video
of the virtual design (top) is complemented by video of its realization in vivo: a
computationally-designed organism locomoting with contractile muscle in an aqueous
environment (presented at 4x speed). At 1:27, an organism is shown to move in the
direction predicted by the in-silico model (one second of video corresponds to 1.25 real-
time minutes). At 1:37, the organism is rotated 180◦ about its transverse plane (placed
on its back) and fails to generate forward movement. At 2:12, the collective behavior
of multiple designs were deployed in an aqueous environment and filmed in timelapse.
Individuals are observed forming stable duplets and triplets, changing partners across
the observation. This behavior was predicted and observed by the in-silico model
(particularly at 2:20). At 2:28, the organism is deployed into an aqueous environment
with an agarose substrate covered in carmine particles, and spontaneously pushes one
of the particles forward through a circling movement pattern. A design explicitly
evolved in silico for pushing a particle (yellow) is also shown for comparison. At 2:39,
a design evolved for locomotion is exapted for object transport (yellow). Following
a demonstration of the brittleness of our current technologies, at 3:02, an organism
was subjected to mechanical laceration with microsurgery forceps. Timelapse imaging
demonstrates wound closure and repair over the course of 10 minutes.

Video S2: Manufacturing reconfigurable organisms.
Link: youtu.be/kCOKtmmNH90

Video S2 provides a timelapse recording of the entire build process for in vivo
representations of the in silico designs. The process begins with the microinjection
of fertilized Xenopus embryos (1.15-1.2mm in diameter) with synthetic mRNAs en-
coding lineage tracers (tdTomato [red] or GFPIII [green]) or proteins to alter cell
fate. At 0:10, after developing for 24 at 14◦C, the vitelline membrane is removed
from each embryo with microsurgery forceps. At 0:23, the animal cap of each embryo
is then surgically excised with forceps and incubated for 10 minutes in dissociation
media. At 0:36, the outer ectodermal layer (which does not dissociate) is manually
separated from the inner cell layers (approximately 30µm in diameter). The remain-
ing tissue is gently agitated to further aid with dissociation, before being pooled
with a micropipette (1:08). At 1:20, hundreds of cells and at 1:27, thousands of cells
are transferred to agarose wells containing standard media (different cell types can be
layer sequentially at this step), promoting cell re-aggregation. At 1:34, cell aggregates
undergo compaction as they re-adhere and are allowed to develop for two additional

147

https://youtu.be/kCOKtmmNH90

days at 14◦C. At 1:50, a microcautery device is utilized to define the rough shape of
the transferred design (650µm-750µm in diameter) and microsurgery forceps are then
used to sculpt the final features.

148

149

150

Figure S1. Pipeline diagram. The pipeline goes from left to right—from input goal to in-silico design to
in-vivo output, and back. The pipeline continues to loop indefinitely, or until some external termination
condition is reached.

151

Figure S2. The fastest designs from the first pass of the pipeline for locomotion. During the first
pass of the pipeline for the goal behavior of locomotion, designs were evaluated in an Earth-like terrestrial
environment and evolution was permitted to finely tune the phase-modulation (from a global signal) of
actuation in each voxel. Under these conditions of precise actuation, and despite an objective explicitly
minimizing the number of contractile voxels (red), the best designs (defined by their locomotive ability)
did not utilize any passive material. There was also a strong convergence in shape: many independent
runs converged to similar geometries. The rainbow streak below each design is its behavior—from initial
(blue) to final position (red)—, superimposed, shifted and scaled to fit on the image (each streak is
identically scaled). The run champions for runs 1 through 100 (with random seeds 1-100) are pictured
in row-major order.

152

Figure S3. The fastest designs from the second pass of the pipeline for locomotion. The second
pass of the pipeline for locomotion incorporated a few additional constraints: First-order hydrodynamics
were added, tissue density was decreased (made lighter), tissue elasticity was decreased (made softer),
and actuation was randomized (each voxel has a randomly-assigned phase-offset which is fixed in all
descendants). Because actuation is provided by fewer and less-coordinated active cells, the behavioral
trajectories (rainbow streaks below the design) have smaller amplitude, and the final displacement was
decreased compared to the first pass (Fig. S2). Although designs were allowed to settle under gravity for
one second before the evaluation period (and actuation) begins, an appreciable portion of the evaluated
behavior sometimes began with the design settling to the floor (falling blue portions of the rainbow
curves). (Behavioral streaks are scaled identically within this figure, but different from those in Fig. S2.)
These additional constraints increased geometric diversity, promoted the use of passive (cyan) tissue, and
generated behavior that better matched that of the biological representations.

153

Avg.
velocity

rank
Run

Failed
conditional

1 90 B1, B3

2 75 B3

3 43 B2, B3

4 5 B3

5 48 B1, B2, B3

6 69 B3

7 51 B2, B3

8 88 B2, B3

9 20 B2, B3

10 76 B2, B3

11 79 B2, B3

12 12 B1, B2

13 84 B1, B2

14 29 B2, B3

15 52 None

16 99 B1

...

100 31 B1

B2. Stable geometry?

Gaps of 100 microns or larger
represent the smallest concavity which
was stable at the time of shaping and
across at least five successive days of
development (Fig. S7).

Do not build.

B3. Mostly passive tissue?

Designs should be at least 50%
passive tissue for energy efficiency,
and to scale to more complex tasks
requiring non-actuating organ systems
and room for payloads.

Do not build.

B1. Contiguous tissue regions?

The current build method layers tissue
types sequentially, one on top of the
other, with each layer filling the x,y
plane (Fig. S6).

yes

Do not build.
no

Select for build.

yes

yes

no

no

B. Build filter.A. Robustness filter.

Figure S4. The design filters and selection criteria. The most performant design from each evolu-
tionary run (the 100 designs in Fig. S3) are filtered in order to select the most promising one (in terms
of estimated transferability, buildability, and scalability) for manufacture. The most performant designs
are first ranked by their median performance (velocity) under random actuation (robustness filter; A).
Then, in rank order, each design is evaluated by the three conditionals (B1-B3) in the build filter (B),
which removes designs that are not suitable for the current build method, and/or those which are not
scalable to more complex tasks in future deployments.

154

Figure S5. The most robust design to pass through the build filter: The champion of run 52
(locomotion; second pass) is drawn floating (A, B), and resting on the surface in simulation (C).

155

Figure S6. Manufacturing cardiomyocyte-driven reconfigurable organisms. mRNA constructs are
delivered to cleave stage Xenopus embryos which inhibit multi-ciliated epithelial cell differentiation and
enable tracking of heart muscle tissue, allowing multiple cell types to be combined and intelligently shaped
(A). Tissues are layered sequentially, first with an underlying layer of unspecified epithelium upon which
cardiac progenitor tissue is deposited (B). A second layer of unspecified epithelium is layered and allowed
to heal for an hour (C). Shaping is then applied to contractile regions using a microcautery electrode to
produce the final shape (D).

156

Figure S7. Determining minimal concavity when shaping reconfigurable organisms. To optimize
the build filter when selecting in silico designs for biological sculpting, spherical biobots were subjected
to progressively smaller shaping gaps to evaluate the minimal size which persists across the organisms
lifespan. Gaps of 100 microns or larger (white line) represented the smallest concavity which was stable
at the time of shaping (A and Ai) and across at least five successive days of development (B and Bi).

157

Figure S8. Quantifying the structural match. Lineage labeled organisms were imaged in multiple
orientations (A) using a FITC filter set to visualize epidermal tissue (green) and a TRITC filter set to
visualize cardiac progenitor (red) tissue. K-means clustering was used to classify each pixel as one of
three tissue types: contractile, passive, or none (B). The Hausdorff distance between in vivo and in
silico pixels (C) was calculated for each tissue type separately, in terms of euclidean distance in microns.
Overall structural error is taken to be the larger of the two Hausdorff distances, computed for the two
tissue types. The design is automatically cropped and rotated in 3D space to find the 2D perspective
with the smallest error.

158

Figure S9. Automatic self-repair in reconfigurable organisms. One week-old non-ciliated recon-
figurable organisms were subjected to mechanical laceration with microsurgery forceps (A, B). Each
individual was filmed with time lapse imaging, every five seconds, for 10 minutes. In all cases, the biolog-
ical representations were able to close the wound and survive through the remainder of the experiment
(A’, B’). Red arrows indicate the site of mechanical damage. Organisms were able to heal much larger
wounds during repair experiments than during their initial shaping (Fig. S7). This is because shaping
requires subtraction of tissue over a longer period (which physically inhibits the wound from shutting)
while repair involves a single laceration delivered in a short duration. Also, in repair experiments, the
organisms possess a fully developed epidermis (which is expected to close wounds) compared to shaping
experiments where all cells are embryonically derived and are still in the process of differentiation.

159

Figure S10. Spontaneous collective behavior and particle aggregation in silico. Collective behavior
of multiple designs interacting with yellow particulate matter in the form of 2×2×1 voxel particles (A).
Five designs (locomotion run champions, from the second pass; Fig. S3) are initially placed amid a 15×15
lattice of the debris (B). One of the designs (run 16) travels relatively straight, while the other four move
in elliptical orbits, often colliding and coupling for multiple revolutions along a new orbit before collision
with a third causes them to detach along a transposed version of their soloist trajectory (C). There was
no top-down selection for such connections, they occur spontaneously and affect the manner in which the
duo interacts with the external objects. In terms of clearing debris, the performance of the interlocked
pair is sometimes more efficient than the sum of its parts.

160

Figure S11. Aggregation of carmine particles occurs only in the presence of organisms. In the
absence of reconfigurable organisms, carmine dye does not self aggregate after 1 or 24 hours (a, b).
However, in the presence of self locomoting organisms, movement of dye particles by individuals can be
observed after one hour (c), and collective aggregation is observed by 24h (d). Scale bar indicates 1 mm.

161

Figure S12. Explicit selection for object manipulation in silico. A new goal was input into the
pipeline: maximize displacement of a 2×2×2 voxel object (yellow), during an evaluation period of 30
sec. Sixteen independent evolutionary runs (with random seeds 1-16) produced sixteen run champs
(A). In some designs, a primitive end-effector—a notch in the corner of the body—evolved to hold and
manipulate the object (B, C).

162

Figure S13. From spontaneous to explicitly-optimized object transportation in silico. Some designs
evolved for displacement reduced hydrodynamic drag via a hole through the center of their transverse
plane (e.g., the champion of run 15; A). This more complex topology was realized in vivo (B) but was
not layered with contractile tissue. In simulation, this emergent feature was exapted as a pouch to store
and transport objects (the 2×2×2 yellow “pills” in C). This realization led to a reformulation of the
goal behavior for a subsequent round of evolution, in which pouches—with a free-floating pill inside
them—were explicitly incorporated as a design constraint (cross-sectional view in D), and the new goal
of maximizing the euclidean distance of the carried object was employed. This yielded evolved object
transport in silico (E). Sixteen runs were performed with this new constraint and objective. The run 8
champion (seed=8) at the end of 350 generations is shown in D and E.

163

Figure S14. Object expulsion in silico. A non-locomotion-based goal was supplied to the pipeline:
thrown object distance [40]. Using an additional objective that maximizes surface-area to volume ratio,
limbs evolved which were used to throw a pink 2×2×2 object. For visibility, the voxels in this figure
are colored by their angle relative to the ground plane, where green denotes parallel (angle zero), cooler
colors (cyan and blue) denote voxel rotations into the right hand side (more or less) of the frame up to
−π, and warmer colors (yellow, orange and red) denote voxel rotations into the left hand side up to +π.
The run 2 champion (seed=2) at the end of 1000 generations is pictured. However, this design relies on
finely-tuned actuation (which is unlikely to transfer) and fails to pass through the build filter because it
is 100% muscle.

164

Figure S15. The encoding bias. Explicit geometry optimization (passive tissue only) within a 10-by-
10-by-3 workspace. We chose seven unique target shapes—the voxelyzed letters “X”, “E”, “N”, “O”,
“B”, “T”, and “S”—and employed the same indirect encoding (CPPNs; [221]), optimization algorithm
(AFPO; [204]), and hyperparameters as in the main paper. Each shape can be represented as a bitstring
with length 300, where each element corresponds to the presence (1) or absence (0) of a voxel at one of
the 300 cartesian coordinates in the workspace. The objective function measures the Hamming distance
between a given shape and the target. We re-optimized with a 10 times larger population size (500)
and parallelized across 10 CPUs, which produced much more accurate solutions in the same wall-clock
time (about 25 minutes per target). This suggests that shape (if not behavioral) complexity scales with
population size. The difficulty of realizing certain target shapes with this encoding, is due to the particular
activation functions we used—sin(), abs(), square(), sqrt(abs())—which tend to produce patterns that
gradually vary in space, and thus bias search away from abrupt perimeter changes, such as the square
cutaways and holes in “E”, “B”, and “S”. This in-silico bias toward round edges mimics an in-vivo bias in
our experiments: the pooled stem cells form a sphere during incubation, and naturally round-off abruptly
carved edges after shaping. In future design-manufacture cycles, if particular structures are known to
be obtainable in vivo and useful for a given task environment (e.g., long appendages for reaching),
mathematical functions that promote such features (e.g., a step function) can be included in the in-silico
design.

165

Figure S16. Stochastic gradient descent directly applied to the design problem. A policy gradient
method [205] was paired with a popular SGD optimizer [112] and directly applied to the design problem
given a random actuation pattern (seed=1). The solution returned by this algorithm is shown from four
different perspectives, with a yellow star drawn above one of the voxels for reference. It is less performant
(4.6 body lengths / min) than the solutions found by the evolutionary algorithm. But more importantly,
it is not manufacturable using the current build method: it fails all three conditionals of the build filter
(Fig. S4).

166

Figure S17. Algorithm analysis. The optimal design was identified in small solution spaces for five
different random actuation patterns (seeds 1-5). The optimal designs in each workspace (2×2×2, 3×2×2,
and 3×3×2) are pictured under their corresponding random seed. The evolutionary algorithm used in
this paper (green curves; EA) is plotted alongside a policy gradient method [205] which used stochastic
gradient descent (blue curves; SGD). Because SGD tends to prematurely converge to a suboptimal
design, the algorithm was then modified to restart search from a new random initialization, every 1000
evaluations (orange curves; SGDre). The mean performance of each algorithm (relative to that of
the optimal solution) is shown as a solid line. The shaded areas around the lines are bootstrapped
68% confidence intervals of the mean (which for normally distributed random variables, corresponds to
plus/minus one standard deviation). The table at the bottom lists the total number of configurations
in each workspace, not accounting for isomorphisms, such as translations or certain rotations, or those
which result from taking the largest connected component to be the design.

167

Figure S18. Scaling the pipeline. Designs were “carved” in silico from 8-by-8-by-7 workspace (448
voxel “cells”) but the organisms were carved in vivo from a 10000 cell sphere, and their final geometries
contain about 5000 cells. However, because the genetic encoding is scale-free, evolved designs (A) can
be scaled to a higher resolution in silico (B-F) while preserving geometry, but not necessarily behavior.
To determine the behavior of anatomically-upscaled designs, additional simulations are required, the
CPU-time of which increases with each virtual voxel. Thus upscaling phenotypes can significantly slow
the pace of evolution. However, a GPU-accelerated version of the simulator was recently released which,
by updating voxels in parallel, may alleviate this concern.

168

Chapter 8

Argument

8.1 Précis of the Thesis
In Chapter 1, a history of evolved robots and protean machines situated the con-
tributions of the present thesis in the literature. Two motivating observations were
stated at the very beginning: (1) organisms are autonomous adaptive systems, and
robots are not; (2) organisms are exceedingly protean systems, and robots are not.
This thesis is at heart about closing the robot-organism gap by means of increasingly
protean machines.

By incrementally incorporating morphological plasticity in the preceding chap-
ters, it was possible to isolate how various aspects of development can affect and,
under certain conditions, guide the evolution of adaptive behavior in embodied sys-
tems. Previously the evolution of development of artificial systems was investigated
using either abstract nonembodied systems (e.g. bitstrings [96]) or software onboard
morphologically-static hardware (e.g. neural network synaptic weights [77, 102]). Evo-
lution and development were therefore confined to select subsets of actions among
the fixed configuration space defined by the static body plan. Neither evolution or
development could vary structure, shape or material properties to construct new con-
figuration alternatives.

In our pursuit of increasingly protean machines, we are also interested in the inter-
action of subsystems unfolding at different timescales. Indeed, as machines become
more embodied [113] and more protean, the number and kind of modalities that can
vary and interact between timescales increases in exponential fashion. As a first step,
we introduced a new mode of evolved development in artificial systems: shape change.
By using embodied agents in a physically realistic environment, our model was able
to strip away some of the assumptions required in previous work. Specifically, the
evolution of open-loop “ballistic” shape change demonstrated that the explicit sup-
pression of development enforced by Hinton and Nowlan [96], and those who built
on their work, is in fact not necessary: ballistic development in physical systems is
enough to increase evolvability (chapter 3).

169

Later in the thesis, shape was allowed to vary in addition to configuration patterns
(chapter 4). Shape change occurred gradually and linearly from evolved infant to
evolved adult forms. The temporal coordination of configuration oscillations was
likewise shifted linearly across evolved initial and final phase-offsets. This allowed us
to investigate how changes in shape and configuration-patterns might differentially
affect the direction or rate of evolutionary search. More specifically, it exposed the
previously unknown phenomenon of differential canalization reported here: Some
initially developmentally plastic traits become integrated and canalized—if and only
if they are robust to changes in other traits that remain plastic. This was missed
in previous studies because they considered development of just a single modality:
neural networks or abstractions thereof.

The robots presented here swept across a continuum of structures, shapes and
material properties, as they moved through their environments. The intersection of
these traits across different timescales generated positive and negative interference
in terms of instantaneous velocity: robots sped up (synergy across developing traits)
and slowed down (interference between traits) during various points in their lifetime.
Unless all of the phenotypes swept over by an individual in development keep the
robot motionless, there will be intervals of relatively superior and inferior perfor-
mance. Evolution can thus improve overall fitness in a descendant by lengthening the
time intervals containing superior phenotypes and reducing the intervals of inferior
phenotypes. However, this is only possible if such mutations exist. We have found
here that such mutations do exist in cases where evolutionary changes to one trait do
not disrupt the successful behavior contributed by other traits.

The finding of differential canalization has important implications for protean
machines since it introduces a form of developmental modularity that allows evolution
to improve one subsystem without disrupting others. This might help explain why
organisms have any persistent canalized forms at all. It also provides a mechanism
through which exceedingly protean machines could settle into a recognizable shape
while operating in a relatively static environment. A temporally-clamped protean
machine might even look like a conventional robot for an extended period of time,
but unlike paradigmatic robots, when the environmental conditions change, a protean
machine is not bounded by a static body plan with fixed sensorimotor constraints and
well-specified configuration spaces.

The current paradigm of robotics relies on well-specified components that are de-
signed to physically interact in particular ways with each other and the outside world.
A sequence of steadily more protean machines, in contrast, will have by definition
progressively ill-specified body plans. This allows increasingly protean machines to
gradually distance themselves from their designer. This is a fundamentally different
form of autonomy than a robot can achieve with a well-specified static morphol-
ogy. Changing a morphologically-static robot’s self image [27, 55], for instance, only

170

changes the way the robot maps sensor data to the sequences of configurations it will
execute. In addition to finding an appropriate mapping from sensors (or central pat-
tern generators) to configuration, there is also the problem of determining the basic
categories of configurations: the configuration space.

By constructing their own structures, shapes and material properties, the protean
machines in this thesis created their own means of interacting with their environments.
Some formed spheres (chapter 4); others grew long limbs (chapter 6); some grew
analogues of bones and calluses; and yet others grew stronger or additional motors
(chapter 5). In each case there was functional emergence: the same sequence of actions
led to different configurations, different ways the robot pushed and pulled against its
environment to propel itself forward or influence objects in its environment (such as
pellets or other agents; chapter 7).

This thesis focused on soft robots, but if a rigid-bodied robot can contort and
reorient its well-specified jointed collection of rigid links into a new resting shape,
and vary its configuration about that new shape, then it is likewise, by definition, a
protean machine. Such a machine could construct its own means of influencing the
world in the same way insects can rub their wings or legs together to generate sounds.
However, a robot with n rigid links is also by definition less protean than a robot with
n2 rigid links, or one that can change the rigidity, volume, number and placement of
its links.

This thesis suggests that autonomy is a spectrum that by and large aligns with
the breadth and depth of morphological plasticity. A developing yet morphologically-
static robot [27, 28, 55, 77, 102] can intelligently select sequences of configurations
among those available given its current body plan, but it cannot deform to regenerate
configuration space lost to structural injury, nor can it morph to expand the set of
configurations made available to it externally from the outset (deployment/birth). It
follows that a more protean machine can potentially be more robust, adaptive and
autonomous than an otherwise equivalent but less protean machine.

Designing protean systems, however, is both operationally and conceptually chal-
lenging. Perhaps because of the former reason, despite early investigations by Pask
and Beer (and a mini-resurgence at Sussex University in the 1990s), protean ma-
chines remain a neglected research program. To overcome some of the conceptual
challenges that arise when designing protean machines, this thesis demonstrated a
variety of automated design tools built up over the past 25 years in the field of evolu-
tionary robotics, and added a few new ones along the way. To overcome some of the
operational concerns that emerge when building robots from artificial materials, an
algorithmic pipeline was introduced for the automated design of completely biological
machines, which are popularly referred to as “xenobots”.

Prior to the work presented here, very few cases of evolved physical robots had
been reported in the literature [33, 38, 70, 94, 99, 182]. In each instance, structure

171

and configuration patterns were evolved, but the robot could not change its body plan
during operation. The first experiment reported here likewise evolved ontogenetically
static structures which were manufactured in reality (chapter 2). To demonstrate the
value of incorporating ontogenetic morphological plasticity, the next set of experi-
ments considered the evolution of ballistic ontogenetic shape change in silico (chapter
3). Plasticity was then marginally increased by evolving ballistic ontogenetic change
not only to resting shape but also to the coordination of configuration oscillations
occurring on a faster timescale in silico (chapter 4). The feedback loop between envi-
ronment and development was then closed by the evolution of ontogenetic changes in
material properties in response to environmental signals in silico (chapter 5). In the
next set of experiments, configuration oscillations were evolved for a fixed structure,
which was later exposed to a series of increasingly deeper structural amputations; for
each damage scenario, the robot automatically deformed its shape so as to recover
function without changing the evolved configuration oscillations (chapter 6). Finally,
we saw the design and manufacture of novel organisms, which represent an alterna-
tive path to protean machines, one in which there is no robot-organism gap, but does
raise its own unique set of engineering challenges (chapter 7).

The following sections summarize each of these chapters in turn.

8.2 Sim-to-Real for Structure
In Chapter 2, a low cost, open source, and modular soft robot design and con-
struction kit was introduced and used to transfer an order of magnitude more robot
designs from simulation to reality than any other method to date.

Protean Capacity

• Phylogenic change: structure, material distribution.

• Ontogenic change: configuration.

Realization

• Material: passive and pneumatically-actuated silicone voxels (cubic bladders).

• Structure: number, placement and kind of voxels.

• Shape [fixed]: atmospheric pressure (cubes).

• Configuration: pressure oscillation of all active voxels in unison (expansion,
compression back to cube, hold at cube, repeat).

172

8.2.1 Contribution
Over the past two and a half decades since Jakobi’s original sim2real experiments
[108], much work has sought to regularize and tune computational models of robots
so that control policies optimized in simulation are just as successful when tested on
the physical system [3, 27, 41, 55, 84, 104, 116, 127, 166, 230, 236]. That is, past
work has extensively studied the simulation-reality gap for configuration controllers.
With the exception of Rosser et al. [197], who transferred parts of a robot (flapping
wing designs), little to no work has investigated the simulation-reality gap for whole
robots as a function of their morphology. By transferring a diversity of locomoting soft
robot designs from simulation to reality, the reality gap was measured as a function of
robot structure given a static control policy. Under one measure (net displacement)
the reality gap appeared rather small, but under another (velocity) the gap was much
wider. This illuminated the fact that there are reality gaps rather than a single gap.
This suggests that, if structure is allowed to vary, automated design could be used as
a filter to discover body plans with the smallest gaps, before utilizing modern sim2real
protocols for controllers.

The kit’s affordability, safety, speed, and simplicity effectively lowers the barrier of
entry to soft robotics for non-experts. Such a tool is poised to generate increasingly
more, and more reproducible, data about the design of protean machines. In the
age of Covid-19, a do-it-yourself-at-home soft robot kit is particularly appealing and
has thus far been adopted by six soft robotics research labs spanning four countries
(Denmark, Japan, UK, USA).

8.3 Ballistic Development
In Chapter 3, a minimal yet embodied model of development was introduced in or-
der to isolate the effect of ontogenetic morphological change, without the confounding
effects of environmental mediation: The shape of the robot changes over its lifetime,
yet development is not influenced by the environment. We refer to this as ballistic
development.

Protean Capacity

• Phylogenic change: shape trajectory.

• Ontogenic change: shape, configuration.

173

Concretization1

• Material [fixed]: actuated voxels (1 to 6 elastic beams).

• Structure [fixed]: a 4-by-4-by-3 block of voxels (48 voxels; 108 elastic beams).

• Shape: evolved initial and final sets of rest volumes (resting beam lengths) for
each voxel; linear ontogenetic shape change between sets.

• Configuration [fixed]: voxel length oscillation, all voxels in unison (expansion/-
contraction according to sine wave with frequency 4 Hz).

8.3.1 Contribution
It was shown that even this simple developmental model confers evolvability because
it allows evolution to sweep over a larger range of body plans than an equivalent non-
developmental system, and subsequent heterochronic mutations “lock in” this body
plan in more morphologically-static descendants.

Ontogenetic shape change naturally provided a continuum in terms of the mag-
nitude of mutational phenotypic impact, from the very large (caused by early-in-life
developmental mutations) to the very small (caused by late-in-life mutations). It was
predicted that, because of this, such a developmental system will be more evolvable
than an equivalent non-developmental system because the latter lacks this inherent
spectrum in the magnitude of mutational impacts.

8.4 Differential Canalization
In Chapter 4, a previously unknown phenomenon was discovered when simulated
protean machines were allowed to develop and evolve: Evolution discovers body plans
robust to control changes, these body plans become genetically assimilated, yet con-
trollers for these agents are not assimilated. This allows evolution to continue climb-
ing fitness gradients by tinkering with the developmental programs for controllers
within these permissive body plans. This exposes a previously unknown detail about
the Baldwin effect: instead of all useful traits becoming genetically assimilated, only
traits that render the agent robust to changes in other traits become assimilated. We
refer to this as differential canalization.

1This particular capacity for morphological change was concretely demonstrated in a computa-
tional yet embodied model (in silico), however it was not realized: no physical robot was used during
hypothesis testing.

174

Protean Capacity

• Phylogenic change: shape trajectory, configuration trajectory.

• Ontogenic change: shape, configuration.

Concretization

• Material [fixed]: same as chapter 3.

• Structure [fixed]: same as chapter 3.

• Shape: same as chapter 3.

• Configuration: voxel length oscillation phase shifted from a central pattern
generator (sine wave with frequency 4 Hz). Evolved initial and final of phase
offsets for each voxel; linear ontogenetic phase-offset change between sets.

8.4.1 Contribution
The key observation here is that only phenotypic traits that render the agent robust
to changes in other traits become assimilated, a phenomenon we term differential
canalization. This insight was exposed by modeling the development of simulated
robots as they interacted with a physically realistic environment.

In 1987, Hinton and Nowlan [96] showed how the Baldwin effect could speed
evolution in the presence of a “needle in the haystack”: an abstract trait that is
only of value when perfect. In chapter 4, an embodied needle in the haystack was
found: a rolling ball. On flat terrain, rolling can be much faster and more efficient
than walking, but finding such a design is difficult in morphologically-static robots
because (1) rolling over once is much less likely to occur in a random individual than
shuffling forwards slightly; and (2) rolling just once incurs the fitness penalty of having
fallen over and thus not being able to subsequently walk for the rest of the trial.

Among the oscillating shapes swept over by the evolution of ballistic development,
some had limbs and shuffled, while others had smoother curvatures and rocked back
and forth. In the lineages of the most fit individuals, rolling was initially discovered
by a distant ancestor at the very end of their ontogeny. A form of progenesis was
then observed in which heterochronic mutations generated descendants with reduced
morphological plasticity in each voxel. This gradually preponed rolling from a late
onset behavior to one that arose increasing earlier in ontogeny.

Shape was thus canalized in the rollers, but configuration patterns were not. This
is because a spherical body shape is a “permissive body plan”. Simply put, practically
all oscillation patterns in an asymmetrical ball will result in locomotion. In fact,

175

thousands of random mutations to the ball did not significantly affect its performance.
Legged body shapes, in contrast, were not permissive: they were finely tuned to match
their configuration oscillations (and vice versa). A sequence of four or five random
mutations would always break the functionality of a legged walker. Because mutations
to legged bodies needed to be precisely coordinated with mutations in configuration
patterns, highly fit legged morphologies could not be canalized.

These results demonstrate how incorporating morphological development in the
optimization of robots can reveal, through differential canalization, characters which
are robust to internal changes. Robots that are robust to internal changes in their
controllers may also be robust to external changes in their environment [28]. Thus,
allowing robots to change their structure as they behave might facilitate evolutionary
improvement of their descendants, even if these robots will be deployed with static
phenotypes or in relatively unchanging environments.

8.5 Environment-Mediated Development
In Chapter 5, simulated robots modified their own material properties in response
to environmental conditions, according to evolved “laws” of ontogenetic change akin
to Wolff’s law of bone growth [252] or the soft tissue corollary, Davis’ law. By doing so
we realized robots that were equally fit but more robust to extreme material defects
than robots that did not develop during their lifetimes, or developed in response to
a different interoceptive stimulus.

Protean Capacity

• Phylogenic change: structure; initial material distribution and gain (rate of
change given stimuli); configuration trajectory.

• Ontogenic change: material, configuration.

Concretization

• Material: dense voxels with evolved initial elasticity (Young’s modulus between
104 and 1010 MPa), and evolved rate of ontogenetic softening/stiffening in re-
sponse to engineering stress / pressure.

• Structure: evolved number and placement of voxels within a 10-by-10-by-10
voxel workspace.

• Shape [fixed]: cubes.

176

• Configuration: voxel length oscillation phase shifted relative to a central pattern
generator with a phase offset of zero (sine wave with frequency 5 Hz).

8.5.1 Contribution
This work demonstrated that robustness can be achieved in artificial systems by
evolving the structure of robots, their configuration patterns, and how their material
properties develop in response to particular interoceptive stimuli during their life-
times. Because development was manually removed before testing, robustness was
not a matter of changing one’s body, as in the example of plant growth [226]; rather,
it was an intrinsic property (a genetic bias) of the evolved structure and configuration
patterns.

We found that different types of developmental feedback loops elicited different
evolved properties. For instance, if one modality (stiffness) responds to one particular
internal signal (engineering stress) but not another (pressure), robots evolved struc-
tures that intrinsically buffered large deviations from their expected material prop-
erties. In other words, morphological change in response to the appropriate signals
during evolution can foster “zero-shot” generalization. Meanwhile, developmental re-
actions in response to pressure increased evolutionary divergence: pressure-adaptive
robots evolved more diverse structures than stress-adaptive robots. This suggests
there may be other developmental feedback loops that could be made available to
evolution that would lead to more diverse and robust robots.

8.6 Shapeshifting for Damage Recovery
In Chapter 6, for the first time, a robot automatically recovered from unanticipated
damage by deforming its resting shape without changing its control policy.

Protean Capacity

• Phylogenic change: configuration trajectory.

• Slow ontogenic change [damage]: structure.

• Medium ontogenic change: shape.

• Fast ontogenic change: configuration.

Realization

• Material [fixed]: pneumatically-actuated, hollow silicone voxels.

177

• Structure: various amputations from quadrupedal form.

• Shape: learned resting pressure for each damage case.

• Configuration: pressure oscillation phase shifted from a central pattern genera-
tor (sine wave with frequency 5 Hz).

8.6.1 Contribution
A new approach to robot damage recovery was proposed. Instead of treating the body
as just the problem domain [27, 55], we here modified it as part of the computational
loop. That is, instead of presenting the remnant shape of the damaged robot to
optimization as fixed, we enabled optimization to fundamentally deform this shape
as the essential part of the recovery process. In doing so we realized a machine that
recovered more function than an otherwise equivalent system that could adapt its
controller but not deform its shape.

Because the robot had ill-specified shape, it could deform to construct its new
effectors, surface contact geometries, and novel mechanisms for the storage/release of
elastic strain energy. Using a simple evolutionary algorithm, the robot automatically
generated and tested body shapes until it found shapes that maintained forward
locomotion in the face of unexpected structural changes.

We found that, especially in the case of “deep insult”, such as removal of all
four of the robot’s legs, the damaged machine evolves shape changes that not only
recover the original level of function (locomotion) as before, but can in fact surpass
the original level of performance (speed). This suggests that shape change, instead
of control readaptation, may be a better method to recover function after damage in
some cases.

8.7 Computer-Designed Organisms
In Chapter 7, I described the first end-to-end automated design of novel organisms:
AI methods design unique organisms in simulation, after which they are rapidly re-
alized as living systems using a cell-based construction kit. This yields a continuous
flow of synthetic living organisms or “biobots” that perform useful tasks yet bear
little resemblance, above the cellular level, to any existing organisms.

Protean Capacity

• Phylogenic change: structure, material; configuration variance.

• Slow ontogenic change [in vivo]: structure, shape, material.

178

• Fast ontogenic change: configuration.

Realization

• Material: initially pluripotent stem cells, later fated to become specific epider-
mal and cardiomyocyte cell lineages.

• Structure: evolved placement and distribution of cell types.

• Shape: cells compact together and conspire to self-heal lacerations in their col-
lective structure (mechanism currently unknown; it’s possible the tissue simply
zippers shut through the action of cadherins, gap junctions, and tight junctions
on neighboring cells).

• Configuration: contraction/relaxation of cardiomyocytes (temporal coordina-
tion in novel structures is currently unknown).

8.7.1 Contribution
Growing interest in AI has to date been restricted to technological constructs such
as neural networks, robots, or autonomous cars. The experiments here introduced
the first artificial, intelligent, yet fully biological constructs. While automatically
designing machines in silico and manufacturing them as robots using 3D printers is
now well established, automatically designing and instantiating living systems has
never before been demonstrated. Recent efforts to build novel living machines [56,
72, 93, 169, 176, 192, 195, 253] used designs created by the investigators, rather
than AI-generated ones. Although the fields of synthetic biology and organoid design
have made inroads into designing living systems, the former is restricted to genetic
modification of existing organisms while the latter is focused on designing only parts
of a whole organism. This work, in contrast, describes a novel path to creating
synthetic organisms out of cells without genomic editing.

Chapter 7 demonstrated how to evolve novel organisms for specific behaviors en-
tirely in simulation and then build them by combining together different biological
tissues. This is possible despite the fact that we do not fully understand how cells
communicate and cooperate to build and maintain functional bodies. Specifically, it
is currently unknown how cardiomyocytes will synchronize their contractions when
reorganized into novel structures in vivo. In order to avoid injecting incorrect as-
sumptions into the simulations, cardiomyocyte temporal coordination was modeled
as random noise. As a side effect of selection pressure for locomotion, derandom-
izing morphologies evolved: evolutionary improvement occurred through changes in
overall structure, and distribution of the passive and contractile cells, to collectively

179

Synthetic
biology

Computer-
designed

organisms biohybrids

?Reconfigurable
organisms

Human-
designed

organisms biohybrids

Herr & Dennis (2004)
Xi et al. (2005)

Feinberg et al. (2007)
Nawroth et al. (2012)

Cvetkovic et al. (2014)
Raman et al. (2016)

Park et al. (2016)“xenobots”

Figure 8.1: Taxonomy of synthetic biology. Xenobots are a particular species of Reconfigurable
Organisms, which are an instantiation of Computer-Designed Organisms, a mode of Synthetic Biology
distinguished from human-designed biological constructs, which includes all organiods and biohybrids
built to date.

derandomize the global movement produced by the random actuation. The resulting
organisms therefore embodied not only the structure of evolved in silico designs but
also their behavior. Thus, by virtue of structure and distribution of material (tissue
types), new kinds of domesticated organisms can be built and programmed to perform
custom tasks.

8.7.2 Future Work
The first computer-designed organisms were called reconfigurable organisms (Fig. 8.1)
because their configuration spaces were changed by combining together different cells
into novel structures. This is a reference to reconfigurable modular robots in which
robot modules are free to attach/detach during assembly and sometimes behavior,
thus blurring the line between structure and configuration [180]. Xenobots are a
particular kind of reconfigurable organism. If we made a batch of reconfigurable or-
ganisms out of cells taken from early embryos of the African elephant (Loxodonta) in-
stead of the African clawed frog (Xenopus laevis) then they would be called “loxobots”
not “xenobots”. There is also the possibility of chimeras (mixtures of species) and

180

biohybrids (mixtures of living and artificial materials).
Reconfigurable organisms are assembled according to a blueprint which could be

computer-generated or human-generated. The blueprint tells a microsurgeon or 3D
bioprinter, at some resolution of detail, precisely where all the tissues should go in
relation to each other. But there are other ways computers could design bespoke
organisms. Rather than a blueprint of a specific target form, a computer-designed
recipe could indicate how and when to apply various biochemical/biomechanical/bio-
electrical manipulations so as to deflect development toward a target form and/or
function. With constant feedback from silico to vivo and back, the pipeline would
learn to influence the cells’ self-assembly instead of imposing sometimes unbuildable
constraints on their structure. These self-reconfigurable computer-designed organ-
isms would thus obviate the need for the build filter described in chapter 7, and could
in theory produce any structure or organ seen in nature (hands, eyes, noses, brains)
and others yet to be discovered by evolution on Earth.

Despite our initial demonstrations that such is possible, it is still unclear which
computer-designed organisms are easy, difficult or impossible to bioengineer in re-
ality. Computer-designed organisms are, in many ways, the inverse of traditional
robots. Many behaviors that are difficult to instantiate in robots composed of metal
and electronics such as self assembly, -reconfiguration, -reproduction, and -repair, are
ubiquitous in living materials. On the other hand, we can fabricate just about any
reasonably scaled and shaped structure using steel, concrete, or plastics; living sys-
tems tend to resist adopting new forms imposed on them. The xenobots, as just one
example, tend to smooth sharp edges and close small concavities in their sculpted
body plans during development.

Collaboration across traditional academic departments (not just between com-
puter science and developmental biology, but also mechanical-, chemical-, biomedical-,
and molecular engineering) will be necessary to more adequately investigate and ex-
ploit this strange inversion of engineering difficulty.

8.8 Conclusion
This thesis presented six sets of experiments (chapters 2 to 7), in which the morpholo-
gies of robots were permitted to vary on increasingly more scales in space and time.
The results suggest that the evolution of development can fortify autonomous ma-
chines against entropy, and expedite the acquisition of performant robust behaviors,
even if the system is later deployed with a relatively static morphology. The penulti-
mate chapter described the first organisms to evolve in computer simulations, instead
of physically on Earth. By building novel multicellular organisms without genetic
engineering, we have learned a great deal about the phenotypic plasticity inherent

181

in development but missing in conventional robots. Ultimately, this knowledge will
be put to work developing useful protean technologies composed of living systems,
artificial materials, or admixtures of both.

182

Bibliography

[1] The Online Encyclopedia of Integer Sequences (Nos. A000162 and A001931).
https://oeis.org/A000162.

[2] David Ackley and Michael Littman. Interactions Between Learning and Evolu-
tion. Artificial Life II, 1992.

[3] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. Solving Rubik’s Cube With a Robot Hand. arXiv Preprint, 2019.

[4] R McNeill Alexander. Principles of Animal Locomotion. Princeton University
Press, 2003. ISBN 9780691126340.

[5] Lauren W Ancel. A Quantitative Model of the Simpson–Baldwin Effect. Journal
of Theoretical Biology, 196(2):197–209, 1999.

[6] Lauren W Ancel. Undermining the Baldwin Expediting Effect: Does Pheno-
typic Plasticity Accelerate Evolution? Theoretical Population Biology, 58(4):
307–319, 2000.

[7] W Ross Ashby. Design for a Brain: The Origin of Adaptive Behaviour. Chap-
man & Hall, 1952.

[8] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
Robust Adversarial Examples. In International Conference on Machine Learn-
ing, pages 284–293, 2018.

[9] Joshua E Auerbach and Josh C Bongard. Dynamic Resolution in the Co-
Evolution of Morphology and Control. In Artificial Life XII: Proceedings of
the Twelfth International Conference on the Synthesis and Simulation of Living
Systems, pages 451–458. MIT Press, 2010.

[10] Joshua E Auerbach and Josh C Bongard. Evolving CPPNS to Grow Three-
Dimensional Physical Structures. In Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pages 627–634. ACM, 2010.

183

https://oeis.org/A000162

[11] Joshua E Auerbach and Josh C Bongard. Environmental Influence on the Evo-
lution of Morphological Complexity in Machines. PLoS Computational Biology,
10(1):e1003399, 2014.

[12] J Mark Baldwin. A New Factor in Evolution. The American Naturalist, 30
(354):441–451, 1896.

[13] František Baluška and Michael Levin. On Having No Head: Cognition Through-
out Biological Systems. Frontiers in Psychology, 7:902, 2016.

[14] David Basanta, Mark Miodownik, and Buzz Baum. The Evolution of Robust
Development and Homeostasis in Artificial Organisms. PLoS Computational
Biology, 4(3):e1000030, 2008.

[15] Patrick Bateson. How Do Sensitive Periods Arise and What Are They For?
Animal Behaviour, 27:470–486, 1979.

[16] CW Beck and JM Slack. A Developmental Pathway Controlling Outgrowth of
the Xenopus Tail Bud. Development, 126(8):1611–1620, 1999.

[17] Randall D Beer. Toward the Evolution of Dynamical Neural Networks for
Minimally Cognitive Behavior. In Proceedings of the Fourth International Con-
ference on the Simulation of Adaptive Behavior, 1996.

[18] Stafford Beer. A Filigree Friendship. Kybernetes, 2001.

[19] Richard K Belew. Evolution, Learning and Culture: Computational Metaphors
for Adaptive Algorithms. Technical Report CS89-156, Computer Science, Univ.
Calif. San. Diego, 1989.

[20] Maxwell R Bennett, Peter Michael Stephan Hacker, and MR Bennett. Philo-
sophical Foundations of Neuroscience, volume 79. Blackwell Oxford, 2003.

[21] Homanga Bharadhwaj, Zihan Wang, Yoshua Bengio, and Liam Paull. A Data-
Efficient Framework for Training and Sim-To-Real Transfer of Navigation Poli-
cies. arXiv Preprint, 2018.

[22] Jon Bird and Paul Layzell. The Evolved Radio and Its Implications for Mod-
elling the Evolution of Novel Sensors. In Proceedings of the 2002 Congress on
Evolutionary Computation (CEC), pages 1836–1841. IEEE, 2002.

[23] Douglas J Blackiston and Michael Levin. Ectopic Eyes Outside the Head in
Xenopus Tadpoles Provide Sensory Data for Light-Mediated Learning. Journal
of Experimental Biology, 216(6):1031–1040, 2013.

184

[24] Douglas J Blackiston, Elena Silva Casey, and Martha R Weiss. Retention of
Memory Through Metamorphosis: Can a Moth Remember What It Learned as
a Caterpillar? PLoS One, 3(3):e1736, 2008.

[25] Douglas J Blackiston, Tal Shomrat, and Michael Levin. The Stability of Mem-
ories During Brain Remodeling: A Perspective. Communicative & Integrative
Biology, 8(5):e1073424, 2015.

[26] Josh Bongard. The Utility of Evolving Simulated Robot Morphology Increases
With Task Complexity for Object Manipulation. Artificial Life, 16(3):201–223,
2010.

[27] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient Machines Through
Continuous Self-Modeling. Science, 314(5802):1118–1121, 2006.

[28] Josh C Bongard. Morphological Change in Machines Accelerates the Evolution
of Robust Behavior. Proceedings of the National Academy of Sciences, 108(4):
1234–1239, 2011.

[29] Josh C Bongard and Rolf Pfeifer. Repeated Structure and Dissociation of Geno-
typic and Phenotypic Complexity in Artificial Ontogeny. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pages 829–836,
2001.

[30] Josh C Bongard and Rolf Pfeifer. Evolving Complete Agents Using Artificial
Ontogeny. Morpho-Functional Machines: The New Species (Designing Embod-
ied Intelligence), pages 237–258, 2003.

[31] Joran W Booth, Jennifer C Case, Edward L White, Dylan S Shah, and Rebecca
Kramer-Bottiglio. An Addressable Pneumatic Regulator for Distributed Con-
trol of Soft Robots. In 2018 IEEE International Conference on Soft Robotics
(RoboSoft), pages 25–30, 2018.

[32] Jeremy P Brockes. Amphibian Limb Regeneration: Rebuilding a Complex
Structure. Science, 276(5309):81–87, 1997.

[33] Luzius Brodbeck, Simon Hauser, and Fumiya Iida. Morphological Evolution of
Physical Robots Through Model-Free Phenotype Development. PloS One, 10
(6):e0128444, 2015.

[34] Eric Brown, Nicholas Rodenberg, John Amend, Annan Mozeika, Erik Steltz,
Mitchell R Zakin, Hod Lipson, and Heinrich M Jaeger. Universal Robotic Grip-
per Based on the Jamming of Granular Material. Proceedings of the National
Academy of Sciences, 107(44):18809–18814, 2010.

185

[35] Ken Caluwaerts, Jérémie Despraz, Atıl Işçen, Andrew P Sabelhaus, Jonathan
Bruce, Benjamin Schrauwen, and Vytas SunSpiral. Design and Control of Com-
pliant Tensegrity Robots Through Simulation and Hardware Validation. Jour-
nal of the Royal Society Interface, 11(98):20140520, 2014.

[36] Peter Cariani. To Evolve an Ear. Epistemological Implications of Gordon Pask’s
Electrochemical Devices. Systems Research, 10(3):19–33, 1993.

[37] Jennifer Carlson and Robin R Murphy. How UGVs Physically Fail in the Field.
IEEE Transactions on Robotics, 21(3):423–437, 2005.

[38] Daniel Cellucci, Robert MacCurdy, Hod Lipson, and Sebastian Risi. 1D Printing
of Recyclable Robots. IEEE Robotics and Automation Letters, 2(4):1964–1971,
2017.

[39] Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and Jean-Baptiste Mouret.
Reset-Free Trial-And-Error Learning for Robot Damage Recovery. Robotics and
Autonomous Systems, 100:236–250, 2018.

[40] Nicolas Chaumont, Richard Egli, and Christoph Adami. Evolving Virtual Crea-
tures and Catapults. Artificial Life, 13(2):139–157, 2007.

[41] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Is-
sac, Nathan Ratliff, and Dieter Fox. Closing the Sim-To-Real Loop: Adapting
Simulation Randomization With Real World Experience. In The International
Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[42] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling
Evolution: Evolving Soft Robots With Multiple Materials and a Powerful Gen-
erative Encoding. In Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pages 167–174. ACM, 2013.

[43] Nick Cheney, Jeff Clune, and Hod Lipson. Evolved Electrophysiological Soft
Robots. In Proceedings of the Conference on Artificial Life (ALife), volume 14,
pages 222–229, 2014.

[44] Nick Cheney, Josh C Bongard, and Hod Lipson. Evolving Soft Robots in Tight
Spaces. In Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, pages 935–942. ACM, 2015.

[45] Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. On the Difficulty
of Co-Optimizing Morphology and Control in Evolved Virtual Creatures. In
Proceedings of the Artificial Life Conference, pages 226–234, 2016.

186

[46] Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. Scalable Co-
Optimization of Morphology and Control in Embodied Machines. Journal of
the Royal Society Interface, 15(143):20170937, 2018.

[47] Andy Clark. Whatever Next? Predictive Brains, Situated Agents, and the
Future of Cognitive Science. Behavioral and Brain Sciences, 36(3):181–204,
2013.

[48] Dave Cliff, Phil Husbands, and Inman Harvey. Explorations in Evolutionary
Robotics. Adaptive Behavior, 2(1):73–110, 1993.

[49] Jeff Clune, Benjamin E Beckmann, Charles Ofria, and Robert T Pennock.
Evolving Coordinated Quadruped Gaits With the Hyperneat Generative En-
coding. In The IEEE Congress on Evolutionary Computation, pages 2764–2771,
2009.

[50] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient Bipedal
Robots Based on Passive-Dynamic Walkers. Science, 307(5712):1082–1085,
2005.

[51] Roger C Conant and W Ross Ashby. Every Good Regulator of a System Must
Be a Model of That System. International Journal of Systems Science, 1(2):
89–97, 1970.

[52] Jonathan Cooke. Scale of Body Pattern Adjusts to Available Cell Number in
Amphibian Embryos. Nature, 290(5809):775–778, 1981.

[53] William C Corning. Regeneration and Retention of Acquired Information. In
Chemistry of Learning, pages 281–294. Springer, 1967.

[54] Francesco Corucci, Nick Cheney, Sam Kriegman, Josh Bongard, and Cecilia
Laschi. Evolutionary Developmental Soft Robotics as a Framework to Study
Intelligence and Adaptive Behavior in Animals and Plants. Frontiers in Robotics
and AI, 4:34, 2017.

[55] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots
That Can Adapt Like Animals. Nature, 521:503–507, 2015.

[56] Caroline Cvetkovic, Ritu Raman, Vincent Chan, Brian J Williams, Madeline
Tolish, Piyush Bajaj, Mahmut Selman Sakar, H Harry Asada, M Taher A Saif,
and Rashid Bashir. Three-Dimensionally Printed Biological Machines Powered
by Skeletal Muscle. Proceedings of the National Academy of Sciences, 111(28):
10125–10130, 2014.

187

[57] Richard Dawkins. The Extended Phenotype: The Long Reach of the Gene.
Oxford University Press, 1982.

[58] Gisèle A Deblandre, Daniel A Wettstein, Naoko Koyano-Nakagawa, and Chris
Kintner. A Two-Step Mechanism Generates the Spacing Pattern of the Ciliated
Cells in the Skin of Xenopus Embryos. Development, 126(21):4715–4728, 1999.

[59] Frank Dellaert and Randall D Beer. Toward an Evolvable Model of Development
for Autonomous Agent Synthesis. In Artificial Life IV, Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems,
pages 246–257. MIT Press, 1994.

[60] Frank Dellaert and Randall D Beer. A Developmental Model for the Evolution
of Complete Autonomous Agents. In Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, 1996.

[61] Daniel C Dennett. Why the Law of Effect Will Not Go Away. Journal for the
Theory of Social Behaviour, 1975.

[62] Daniel C Dennett. The Baldwin Effect: A Crane, Not a Skyhook. Evolution
and Learning: The Baldwin Effect Reconsidered, pages 60–79, 2003.

[63] R Vasundhara Devi, S Siva Sathya, and Mohane Selvaraj Coumar. Evolutionary
Algorithms for De Novo Drug Design–A Survey. Applied Soft Computing, 27:
543–552, 2015.

[64] René Doursat. Organically Grown Architectures: Creating Decentralized, Au-
tonomous Systems by Embryomorphic Engineering. In Organic Computing,
pages 167–199. Springer, 2009.

[65] René Doursat and Carlos Sánchez. Growing Fine-Grained Multicellular Robots.
Soft Robotics, 1(2):110–121, 2014.

[66] Keith L Downing. Development and the Baldwin Effect. Artificial Life, 10(1):
39–63, 2004.

[67] Hubert L Dreyfus. Why Computers Must Have Bodies in Order to Be Intelli-
gent. The Review of Metaphysics, pages 13–32, 1967.

[68] Peter Eggenberger. Evolving Morphologies of Simulated 3D Organisms Based
on Differential Gene Expression. In Proceedings of the European Conference on
Artificial Life, pages 205–213, 1997.

188

[69] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture
Search: A Survey. arXiv Preprint arXiv:1808.05377, 2018.

[70] Andrés Faíña, Francisco Bellas, Fernando López-Peña, and Richard J Duro.
EDHMoR: Evolutionary Designer of Heterogeneous Modular Robots. Engi-
neering Applications of Artificial Intelligence, 26(10):2408–2423, 2013.

[71] Tim W. Fawcett and Willem E. Frankenhuis. Adaptive explanations for sensi-
tive windows in development. Frontiers in Zoology, 12(1):S3, Aug 2015. ISSN
1742-9994.

[72] Adam W Feinberg, Alex Feigel, Sergey S Shevkoplyas, Sean Sheehy, George M
Whitesides, and Kevin Kit Parker. Muscular Thin Films for Building Actuators
and Powering Devices. Science, 317(5843):1366–1370, 2007.

[73] Samuel Felton, Michael Tolley, Erik Demaine, Daniela Rus, and Robert Wood.
A Method for Building Self-Folding Machines. Science, 345(6197):644–646,
2014.

[74] Chrisantha Thomas Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang,
Tom Schaul, Denis Teplyashin, Pablo Sprechmann, Alexander Pritzel, and
Andrei A Rusu. Meta Learning by the Baldwin Effect. arXiv Preprint
arXiv:1806.07917, 2018.

[75] Chris Fields and Michael Levin. Scale-Free Biology: Integrating Evolutionary
and Developmental Thinking. BioEssays, 42(8):1900228, 2020.

[76] Ronald Aylmer Fisher. The Genetical Theory of Natural Selection. Oxford
University Press, 1930.

[77] D Floreano and F Mondada. Evolution of Plastic Neurocontrollers for Situated
Agents. In From Animals to Animats 4, Proceedings of the 4th International
Conference on Simulation of Adaptive Behavior (SAB), pages 402–410. MIT
Press, 1996.

[78] Dario Floreano and Francesco Mondada. Evolution of Homing Navigation in a
Real Mobile Robot. IEEE Transactions on Systems, Man, and Cybernetics, 26
(3):396–407, 1996.

[79] David B Fogel. Evolutionary Computation: The Fossil Record. IEEE Press,
1998.

189

[80] Robert French and Adam Messinger. Genes, Phenes and the Baldwin Effect:
Learning and Evolution in a Simulated Population. In Artificial Life IV, pages
277–282. Cambridge, MA: MIT Press, 1994.

[81] Robert M French. Dynamically Constraining Connectionist Networks to Pro-
duce Distributed, Orthogonal Representations to Reduce Catastrophic Interfer-
ence. In Proceedings of the 16th Annual Cog. Sci. Society Conference, 1994.

[82] Robert M French. Catastrophic Forgetting in Connectionist Networks. Trends
in Cognitive Sciences, 3(4):128–135, 1999.

[83] A Sydney Gladman, Elisabetta A Matsumoto, Ralph G Nuzzo, L Mahadevan,
and Jennifer A Lewis. Biomimetic 4d Printing. Nature Materials, 15(4):413–
418, 2016.

[84] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer.
Sim-To-Real Transfer With Neural-Augmented Robot Simulation. In Proceed-
ings of the 2nd Conference on Robot Learning, volume 87 of Proceedings of
Machine Learning Research, pages 817–828. PMLR, 2018.

[85] Ian Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Ben-
gio. An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
Neural Networks. arXiv Preprint arXiv:1312.6211, 2013.

[86] Martyn Goulding. Circuits Controlling Vertebrate Locomotion: Moving in a
New Direction. Nature Reviews Neuroscience, 10(7):507, 2009.

[87] Gail L Grabowsky. Symmetry, Locomotion, and the Evolution of an Anterior
End: A Lesson From Sea Urchins. Evolution, 48(4):1130–1146, 1994.

[88] David Ha. Evolving Stable Strategies, 2017. blog.otoro.net/2017/11/12/
evolving-stable-strategies.

[89] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary
robotics: the sussex approach. Robotics and Autonomous Systems, 20(2):205 –
224, 1997. ISSN 0921-8890.

[90] Inman Harvey. Robotics: Philosophy of Mind Using a Screwdriver. In Evo-
lutionary Robotics: From Intelligent Robots to Artificial Life, Vol. III, pages
207–230, 2000.

[91] Inman Harvey, Phil Husbands, Dave Cliff, Adrian Thompson, and Nick Jakobi.
Evolutionary Robotics: The Sussex Approach. Robotics and Autonomous Sys-
tems, 20(2-4):205–224, 1997.

190

https://blog.otoro.net/2017/11/12/evolving-stable-strategies/
https://blog.otoro.net/2017/11/12/evolving-stable-strategies/

[92] Elliot Hawkes, B An, Nadia M Benbernou, H Tanaka, Sangbae Kim, ED De-
maine, D Rus, and Robert J Wood. Programmable Matter by Folding. Pro-
ceedings of the National Academy of Sciences, 107(28):12441–12445, 2010.

[93] Hugh Herr and Robert G Dennis. A Swimming Robot Actuated by Living
Muscle Tissue. Journal of Neuroengineering and Rehabilitation, 1(1):1–9, 2004.

[94] Jonathan Hiller and Hod Lipson. Automatic Design and Manufacture of Soft
Robots. IEEE Transactions on Robotics, 28(2):457–466, 2012.

[95] Jonathan Hiller and Hod Lipson. Dynamic Simulation of Soft Multimaterial
3D-Printed Objects. Soft Robotics, 1(1):88–101, 2014.

[96] Geoffrey E Hinton and Steven J Nowlan. How Learning Can Guide Evolution.
Complex Systems, 1(3):495–502, 1987.

[97] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai.
Subspace Neural Physics: Fast Data-Driven Interactive Simulation. In Pro-
ceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, page 6, 2019.

[98] Gregory S Hornby and Jordan B Pollack. Creating High-Level Components
With a Generative Representation for Body-Brain Evolution. Artificial Life, 8
(3):223–246, 2002.

[99] Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Generative Represen-
tations for the Automated Design of Modular Physical Robots. IEEE Transac-
tions on Robotics and Automation, 19(4):703–719, 2003.

[100] Peter Eggenberger Hotz. Asymmetric Cell Division and Its Integration With
Other Developmental Processes for Artificial Evolutionary Systems. In Artificial
Life IX: Proceedings of the Ninth International Conference on the Simulation
and Synthesis of Artificial Life, volume 9, page 387. MIT Press, 2004.

[101] Mark D Huntington, Lincoln J Lauhon, and Teri W Odom. Subwavelength
Lattice Optics by Evolutionary Design. Nano Letters, 14(12):7195–7200, 2014.

[102] Phil Husbands, Tom Smith, Nick Jakobi, and Michael O’Shea. Better Living
Through Chemistry: Evolving Gasnets for Robot Control. Connection Science,
10(3-4):185–210, 1998.

[103] Clyde A Hutchison, Ray-Yuan Chuang, Vladimir N Noskov, Nacyra Assad-
Garcia, Thomas J Deerinck, Mark H Ellisman, John Gill, Krishna Kannan,

191

Bogumil J Karas, Li Ma, et al. Design and Synthesis of a Minimal Bacterial
Genome. Science, 351(6280), 2016.

[104] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning Agile and Dynamic
Motor Skills for Legged Robots. Science Robotics, 4(26), 2019.

[105] Cynthia M Illingworth. Trapped Fingers and Amputated Finger Tips in Chil-
dren. Journal of Pediatric Surgery, 9(6):853–858, 1974.

[106] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. Human-Level Performance in 3D Multiplayer Games
With Population-Based Reinforcement Learning. Science, 364(6443):859–865,
2019.

[107] Nick Jakobi. Evolutionary Robotics and the Radical Envelope-Of-Noise Hy-
pothesis. Adaptive Behavior, 6(2):325–368, 1997.

[108] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the Reality Gap:
The Use of Simulation in Evolutionary Robotics. In European Conference on
Artificial Life, pages 704–720. Springer, 1995.

[109] Michał Joachimczak, Reiji Suzuki, and Takaya Arita. Artificial Metamorphosis:
Evolutionary Design of Transforming, Soft-Bodied Robots. Artificial Life, 22
(3):271–298, 2016.

[110] Roger D Kamm, Rashid Bashir, Natasha Arora, Roy D Dar, Martha U Gillette,
Linda G Griffith, Melissa L Kemp, Kathy Kinlaw, Michael Levin, Adam C
Martin, et al. Perspective: The Promise of Multi-Cellular Engineered Living
Systems. APL Bioengineering, 2(4):040901, 2018.

[111] Takeshi Kano, Eiki Sato, Tatsuya Ono, Hitoshi Aonuma, Yoshiya Matsuzaka,
and Akio Ishiguro. A Brittle Star-Like Robot Capable of Immediately Adapting
to Unexpected Physical Damage. Royal Society Open Science, 4(12):171200,
2017.

[112] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv Preprint arXiv:1412.6980, 2014.

[113] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empower-
ment: A Universal Agent-Centric Measure of Control. In 2005 IEEE Congress
on Evolutionary Computation, volume 1, pages 128–135, 2005.

192

[114] Maciej Komosinski. The Framsticks System: Versatile Simulator of 3D Agents
and Their Evolution. Kybernetes, 32(1/2):156–173, 2003.

[115] Maciej Komosiński and Adam Rotaru-Varga. Comparison of Different Genotype
Encodings for Simulated Three-Dimensional Agents. Artificial Life, 7(4):395–
418, 2001.

[116] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The Transfer-
ability Approach: Crossing the Reality Gap in Evolutionary Robotics. IEEE
Transactions on Evolutionary Computation, 17(1):122–145, 2012.

[117] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The Transfer-
ability Approach: Crossing the Reality Gap in Evolutionary Robotics. IEEE
Transactions on Evolutionary Computation, 17(1):122–145, 2013.

[118] Arda Kotikian, Connor McMahan, Emily C Davidson, Jalilah M Muhammad,
Robert DWeeks, Chiara Daraio, and Jennifer A Lewis. Untethered Soft Robotic
Matter With Passive Control of Shape Morphing and Propulsion. Science
Robotics, 4(33):eaax7044, 2019.

[119] Kostas Kouvaris, Jeff Clune, Loizos Kounios, Markus Brede, and Richard Wat-
son. How Evolution Learns to Generalise: Using the Principles of Learning
Theory to Understand the Evolution of Developmental Organisation. PLoS
Computational Biology, pages 1–41, 2017.

[120] Sam Kriegman. Why Virtual Creatures Matter. Nature Machine Intelligence,
1(10):492–492, 2019.

[121] Sam Kriegman, Nick Cheney, Francesco Corucci, and Josh C Bongard. A Mini-
mal Developmental Model Can Increase Evolvability in Soft Robots. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 131–138.
ACM, 2017.

[122] Sam Kriegman, Nick Cheney, and Josh Bongard. How Morphological Develop-
ment Can Guide Evolution. Scientific Reports, 8(1):13934, 2018.

[123] Sam Kriegman, Nick Cheney, Francesco Corucci, and Josh C. Bongard. Inte-
roceptive Robustness Through Environment-Mediated Morphological Develop-
ment. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 109–116. ACM, 2018.

[124] Sam Kriegman, Stephanie Walker, Dylan Shah, Michael Levin, Rebecca
Kramer-Bottiglio, and Josh Bongard. Automated Shapeshifting for Function

193

Recovery in Damaged Robots. In Proceedings of Robotics: Science and Systems
(RSS), 2019.

[125] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. A Scal-
able Pipeline for Designing Reconfigurable Organisms. Proceedings of the Na-
tional Academy of Sciences, 117(4):1853–1859, 2020.

[126] Sam Kriegman, Amir Mohammadi Nasab, Dylan Shah, Hannah Steele,
Gabrielle Branin, Michael Levin, Josh Bongard, and Rebecca Kramer-Bottiglio.
Scalable Sim-To-Real Transfer of Soft Robot Designs. In Proceedings of the 3rd
IEEE International Conference on Soft Robotics (RoboSoft), 2020.

[127] Robert Kwiatkowski and Hod Lipson. Task-Agnostic Self-Modeling Machines.
Science Robotics, 4(26), 2019.

[128] Russell Lande. Adaptation to an Extraordinary Environment by Evolution
of Phenotypic Plasticity and Genetic Assimilation. Journal of Evolutionary
Biology, 22(7):1435–1446, 2009.

[129] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[130] Joel Lehman and Kenneth O Stanley. Evolving a Diversity of Virtual Creatures
Through Novelty Search and Local Competition. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, pages 211–218,
2011.

[131] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O Stanley. Safe Mutations for
Deep and Recurrent Neural Networks Through Output Gradients. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 117–124,
2018.

[132] Dan Lessin and Sebastian Risi. Soft-Body Muscles for Evolved Virtual Crea-
tures: The Next Step on a Bio-Mimetic Path to Meaningful Morphological
Complexity. In Artificial Life Conference Proceedings 13, pages 604–611, 2015.

[133] Dan Lessin, Don Fussell, and Risto Miikkulainen. Open-Ended Behavioral Com-
plexity for Evolved Virtual Creatures. In Proceedings of the 15th Annual Con-
ference on Genetic and Evolutionary Computation, pages 335–342, 2013.

[134] Michael Levin. Reprogramming cells and tissue patterning via bioelectrical
pathways: molecular mechanisms and biomedical opportunities. Wiley Inter-
disciplinary Reviews: Systems Biology and Medicine, 5(6):657–676, 2013.

194

[135] Jinxing Li, Berta Esteban-Fernández de Ávila, Wei Gao, Liangfang Zhang, and
Joseph Wang. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing,
and Detoxification. Science Robotics, 2(4), 2017.

[136] Shuguang Li, Richa Batra, David Brown, Hyun-Dong Chang, Nikhil Ran-
ganathan, Chuck Hoberman, Daniela Rus, and Hod Lipson. Particle Robotics
Based on Statistical Mechanics of Loosely Coupled Components. Nature, 567
(7748):361–365, 2019.

[137] Lukas Lichtensteiger and Peter Eggenberger. Evolving the Morphology of a
Compound Eye on a Robot. In The Third European Workshop on Advanced
Mobile Robots (Eurobot), pages 127–134. IEEE, 1999.

[138] Hod Lipson. Principles of Modularity, Regularity, and Hierarchy for Scalable
Systems. The Journal of Biological Physics and Chemistry, 7(4):125–128, 2007.

[139] Hod Lipson. Challenges and Opportunities for Design, Simulation, and Fabri-
cation of Soft Robots. Soft Robotics, 1(1):21–27, 2014.

[140] Hod Lipson and Jordan B Pollack. Automatic Design and Manufacture of
Robotic Lifeforms. Nature, 406(6799):974, 2000.

[141] Sida Liu, David Matthews, Sam Kriegman, and Josh Bongard.
Voxcraft-Sim, a GPU-accelerated Voxel-Based Physics Engine.
github.com/voxcraft/voxcraft-sim, 2020. 10.5281/zenodo.3835152.

[142] Daniel Lobo, Wendy S Beane, and Michael Levin. Modeling Planarian Regen-
eration: A Primer for Reverse-Engineering the Worm. PLoS Computational
Biology, 8(4):e1002481, 2012.

[143] Michael Lynch. Evolution of the Mutation Rate. Trends in Genetics, 26(8):
345–352, 2010.

[144] Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Ste-
fan Jeschke, and Viktor Makoviychuk. Non-Smooth Newton Methods for De-
formable Multi-Body Dynamics. ACM Transactions on Graphics (TOG), 38
(5):140, 2019.

[145] John D Madden, Serge R Lafontaine, and Ian W Hunter. Fabrication by Elec-
trodeposition: Building 3D Structures and Polymer Actuators. In Proceedings
of the Sixth International Symposium on Micro Machine and Human Science,
pages 77–81. IEEE, 1995.

195

https://github.com/voxcraft/voxcraft-sim
https://doi.org/10.5281/zenodo.3835152

[146] Siavash Haroun Mahdavi and Peter J Bentley. An Evolutionary Approach to
Damage Recovery of Robot Motion With Muscles. In European Conference on
Artificial Life, pages 248–255. Springer, 2003.

[147] Carmel Majidi, Robert F Shepherd, Rebecca K Kramer, George M Whitesides,
and Robert J Wood. Influence of Surface Traction on Soft Robot Undulation.
The International Journal of Robotics Research, 32(13):1577–1584, 2013.

[148] Carlo C Maley. Four Steps Toward Open-Ended Evolution. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), volume 2,
pages 1336–1343, 1999.

[149] Jan Matas, Stephen James, and Andrew J Davison. Sim-To-Real Reinforce-
ment Learning for Deformable Object Manipulation. In Proceedings of the 2nd
Conference on Robot Learning, volume 87 of Proceedings of Machine Learning
Research, pages 734–743. PMLR, 2018.

[150] Giles Mayley. Landscapes, Learning Costs, and Genetic Assimilation. Evolu-
tionary Computation, 4(3):213–234, 1996.

[151] Catherine McCusker and David M Gardiner. The Axolotl Model for Regener-
ation and Aging Research: A Mini-Review. Gerontology, 57(6):565–571, 2011.

[152] Orazio Miglino, Kourosh Nafasi, and Charles E. Taylor. Selection for wandering
behavior in a small robot. Artificial Life, 2(1):101–116, 1994.

[153] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink,
Olivier Francon, Bala Raju, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat.
Evolving Deep Neural Networks. arXiv Preprint arXiv:1703.00548, 2017.

[154] Julian Francis Miller. Evolving a Self-Repairing, Self-Regulating, French Flag
Organism. In Genetic and Evolutionary Computation Conference, pages 129–
139. Springer, 2004.

[155] Aslan Miriyev, Kenneth Stack, and Hod Lipson. Soft Material for Soft Actua-
tors. Nature Communications, 8(1):596, 2017.

[156] Shuhei Miyashita, Steven Guitron, Shuguang Li, and Daniela Rus. Robotic
Metamorphosis by Origami Exoskeletons. Science Robotics, 2(10):eaao4369,
2017.

[157] Armin P Moczek, Sonia Sultan, Susan Foster, Cris Ledón-Rettig, Ian Dworkin,
H Fred Nijhout, Ehab Abouheif, and David W Pfennig. The Role of Develop-
mental Plasticity in Evolutionary Innovation. Proceedings of the Royal Society
of London B: Biological Sciences, 278(1719):2705–2713, 2011.

196

[158] Rico Moeckel, Yura N Perov, Anh The Nguyen, Massimo Vespignani, Stéphane
Bonardi, Soha Pouya, Alexander Sproewitz, Jesse van den Kieboom, Frédéric
Wilhelm, and Auke Jan Ijspeert. Gait Optimization for Roombots Modular
Robots–Matching Simulation and Reality. In The IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3265–3272, 2013.

[159] JR Montgomery and SJ Coward. On the Minimal Size of a Planarian Capable
of Regeneration. Transactions of the American Microscopical Society, 93(3):
386, 1974.

[160] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael
Levin. Growing Neural Cellular Automata. Distill, 5(2):e23, 2020.

[161] C Lloyd Morgan. On Modification and Variation. Science, 4(99):733–740, 1896.

[162] Stephen A. Morin, Sen Wai Kwok, Joshua Lessing, Jason Ting, Robert F.
Shepherd, Adam A. Stokes, and George M. Whitesides. Elastomeric Tiles for
the Fabrication of Inflatable Structures. Advanced Functional Materials, 24(35):
5541–5549, 2014.

[163] Caitlin T Mueller and John A Ochsendorf. Combining Structural Performance
and Designer Preferences in Evolutionary Design Space Exploration. Automa-
tion in Construction, 52:70–82, 2015.

[164] David J Munk, Gareth A Vio, and Grant P Steven. Topology and Shape
Optimization Methods Using Evolutionary Algorithms: A Review. Structural
and Multidisciplinary Optimization, 52(3):613–631, 2015.

[165] Courtney J Murren, Josh R Auld, H Callahan, Cameron K Ghalambor, Corey A
Handelsman, Mary A Heskel, JG Kingsolver, Heidi J Maclean, Joanna Masel,
Heather Maughan, et al. Constraints on the Evolution of Phenotypic Plasticity:
Limits and Costs of Phenotype and Plasticity. Heredity, 115(4):293–301, 2015.

[166] Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, and Vikash Kumar.
Multi-Agent Manipulation via Locomotion Using Hierarchical Sim2real. In Pro-
ceedings of the 3rd Conference on Robot Learning, 2019.

[167] Yashraj S Narang, Alperen Degirmenci, Joost J Vlassak, and Robert D
Howe. Transforming the Dynamic Response of Robotic Structures and Sys-
tems Through Laminar Jamming. IEEE Robotics and Automation Letters, 3
(2):688–695, 2018.

[168] NASA. Nuclear and Space Radiation Effects on Materials. Space Vehicle Design
Criteria, SP-8053, 1970.

197

[169] Janna C Nawroth, Hyungsuk Lee, Adam W Feinberg, Crystal M Ripplinger,
Megan L McCain, Anna Grosberg, John O Dabiri, and Kevin Kit Parker. A
Tissue-Engineered JellyfishWith Biomimetic Propulsion. Nature Biotechnology,
30(8):792–797, 2012.

[170] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks Are Easily
Fooled: High Confidence Predictions for Unrecognizable Images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
427–436, 2015.

[171] Pieter D Nieuwkoop. Normal Table of Xenopus Laevis (Daudin). Normal Table
of Xenopus Laevis (Daudin), pages 162–203, 1956.

[172] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. MIT press, 2000.

[173] Stefano Nolfi, Domenico Parisi, and Jeffrey L Elman. Learning and Evolution
in Neural Networks. Adaptive Behavior, 3(1):5–28, 1994.

[174] Tønnes F Nygaard, Charles P Martin, Eivind Samuelsen, Jim Torresen, and
Kyrre Glette. Real-World Evolution Adapts Robot Morphology and Control to
Hardware Limitations. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 125–132, 2018.

[175] Tønnes F Nygaard, Charles P Martin, David Howard, Jim Torresen, and Kyrre
Glette. Environmental Adaptation of Robot Morphology and Control Through
Real-World Evolution. arXiv Preprint arXiv:2003.13254, 2020.

[176] Sung-Jin Park, Mattia Gazzola, Kyung Soo Park, Shirley Park, Valentina
Di Santo, Erin L Blevins, Johan U Lind, Patrick H Campbell, Stephanie Dauth,
Andrew K Capulli, et al. Phototactic Guidance of a Tissue-Engineered Soft-
Robotic Ray. Science, 353(6295):158–162, 2016.

[177] Gordon Pask. Physical Analogues to the Growth of a Concept. InMechanization
of Thought Processes, Symposium, volume 10, pages 765–794, 1958.

[178] Gordon Pask. The Natural History of Networks. Self-Organizing Systems, pages
232–263, 1960.

[179] Gordon Pask. An Approach to Cybernetics. Hutchinson, 1961.

[180] Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros.
Learning to Control Self-Assembling Morphologies: A Study of Generaliza-
tion via Modularity. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

198

[181] Debabrata Patra, Samudra Sengupta, Wentao Duan, Hua Zhang, Ryan Pavlick,
and Ayusman Sen. Intelligent, Self-Powered, Drug Delivery Systems. Nanoscale,
5(4):1273–1283, 2013.

[182] Chandana Paul, Francisco J Valero-Cuevas, and Hod Lipson. Design and Con-
trol of Tensegrity Robots for Locomotion. IEEE Transactions on Robotics, 22
(5):944–957, 2006.

[183] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-To-Real Transfer of Robotic Control With Dynamics Randomization. In
The IEEE International Conference on Robotics and Automation (ICRA), 2018.

[184] Peter Pesic. Shapes of Proteus in Renaissance art. Huntington Library Quar-
terly, 73(1):57–82, 2010.

[185] Giovanni Pezzulo and Michael Levin. Re-Membering the Body: Applications
of Computational Neuroscience to the Top-Down Control of Regeneration of
Limbs and Other Complex Organs. Integrative Biology, 7(12):1487–1517, 2015.

[186] Giovanni Pezzulo and Michael Levin. Top-Down Models in Biology: Expla-
nation and Control of Complex Living Systems Above the Molecular Level.
Journal of the Royal Society Interface, 13(124):20160555, 2016.

[187] Rolf Pfeifer and Josh Bongard. How the Body Shapes the Way We Think: A
New View of Intelligence. MIT press, 2006.

[188] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. The Challenges Ahead for
Bio-Inspired ‘Soft’ Robotics. Communications of the ACM, 55(11):76–87, 2012.

[189] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and
Pieter Abbeel. Asymmetric Actor Critic for Image-Based Robot Learning. In
Proceedings of Robotics: Science and Systems, 2018.

[190] Jérôme Piquereau and Renée Ventura-Clapier. Maturation of Cardiac Energy
Metabolism During Perinatal Development. Frontiers in Physiology, 9:959,
2018.

[191] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory Optimization Towards Training a Trillion Parameter Models. arXiv
Preprint arXiv:1910.02054, 2019.

[192] Ritu Raman, Caroline Cvetkovic, Sebastien GM Uzel, Randall J Platt, Parijat
Sengupta, Roger D Kamm, and Rashid Bashir. Optogenetic Skeletal Muscle-
Powered Adaptive Biological Machines. Proceedings of the National Academy
of Sciences, 113(13):3497–3502, 2016.

199

[193] Thomas S Ray. Aesthetically Evolved Virtual Pets. Leonardo, 34(4):313–316,
2001.

[194] Guanjiao Ren, Weihai Chen, Sakyasingha Dasgupta, Christoph Kolodziejski,
Florentin Wörgötter, and Poramate Manoonpong. Multiple Chaotic Central
Pattern Generators With Learning for Legged Locomotion and Malfunction
Compensation. Information Sciences, 294:666–682, 2015.

[195] Leonardo Ricotti, Barry Trimmer, Adam W Feinberg, Ritu Raman, Kevin K
Parker, Rashid Bashir, Metin Sitti, Sylvain Martel, Paolo Dario, and Arianna
Menciassi. Biohybrid Actuators for Robotics: A Review of Devices Actuated
by Living Cells. Science Robotics, 2(12), 2017.

[196] John W Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 3D M-
Blocks: Self-Reconfiguring Robots Capable of Locomotion via Pivoting in Three
Dimensions. In The IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1925–1932, 2015.

[197] Kent Rosser, Jia Kok, Javaan Chahl, and Josh Bongard. Sim2real Transfer De-
grades Non-Monotonically With Morphological Complexity for Flapping Wing
Design. arXiv Preprint, 2019.

[198] Christopher Ruff, Brigitte Holt, and Erik Trinkaus. Who’s Afraid of the Big
Bad Wolff?: “Wolff’s Law” and Bone Functional Adaptation. American Journal
of Physical Anthropology, 129(4):484–498, 2006.

[199] Daniela Rus and Michael T Tolley. Design, Fabrication and Control of Soft
Robots. Nature, 521(7553):467–475, 2015.

[200] Andrei A Rusu, Matej Večerík, Thomas Rothörl, Nicolas Heess, Razvan Pas-
canu, and Raia Hadsell. Sim-To-Real Robot Learning From Pixels With Pro-
gressive Nets. In Conference on Robot Learning, pages 262–270. PMLR, 2017.

[201] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evo-
lution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv
Preprint arXiv:1703.03864, 2017.

[202] Mauro Santos, Eörs Szathmáry, and José F Fontanari. Phenotypic Plasticity,
the Baldwin Effect, and the Speeding Up of Evolution: The Computational
Roots of an Illusion. Journal of Theoretical Biology, 371:127–136, 2015.

[203] Yoshiki Sasai, Mototsugu Eiraku, and Hidetaka Suga. In Vitro Organogenesis
in Three Dimensions: Self-Organising Stem Cells. Development, 139(22):4111–
4121, 2012.

200

[204] Michael Schmidt and Hod Lipson. Age-Fitness Pareto Optimization. In Genetic
Programming Theory and Practice VIII, pages 129–146. Springer, 2011.

[205] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Pe-
ters, and Jürgen Schmidhuber. Parameter-Exploring Policy Gradients. Neural
Networks, 23(4):551–559, 2010.

[206] Bernhard Sendhoff and Martin Kreutz. A Model for the Dynamic Interaction
Between Evolution and Learning. Neural Processing Letters, 10(3):181–193,
1999.

[207] Dylan Shah, Bilige Yang, Sam Kriegman, Michael Levin, Josh Bongard, and
Rebecca Kramer-Bottiglio. Shape changing robots: bioinspiration, simulation,
and physical realization. Advanced Materials, page 2002882, 2020.

[208] Dylan S Shah, Michelle C Yuen, Liana G Tilton, Ellen J Yang, and Rebecca
Kramer-Bottiglio. Morphing Robots Using Robotic Skins That Sculpt Clay.
IEEE Robotics and Automation Letters, 4(2):2204–2211, 2019.

[209] Dylan S Shah, Joshua P Powers, Liana G Tilton, Sam Kriegman, Josh Bongard,
and Rebecca Kramer-Bottiglio. Gaining Environments Through Shape Change.
arXiv Preprint arXiv:2008.06397, 2020.

[210] Robert F Shepherd, Filip Ilievski, Wonjae Choi, Stephen A Morin, Adam A
Stokes, Aaron D Mazzeo, Xin Chen, Michael Wang, and George M Whitesides.
Multigait Soft Robot. Proceedings of the National Academy of Sciences, 108
(51):20400–20403, 2011.

[211] Yoon-Sik Shim and Chang-Hun Kim. Evolving Physically Simulated Flying
Creatures for Efficient Cruising. Artificial Life, 12(4):561–591, 2006.

[212] Tal Shomrat and Michael Levin. An Automated Training Paradigm Reveals
Long-Term Memory in Planaria and Its Persistence Through Head Regenera-
tion. Journal of Experimental Biology, pages jeb–087809, 2013.

[213] George Gaylord Simpson. The Baldwin Effect. Evolution, 7(2):110–117, 1953.

[214] Karl Sims. Evolving 3D Morphology and Behavior by Competition. Artificial
Life, 1(4):353–372, 1994.

[215] Karl Sims. Evolving Virtual Creatures. In Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, pages 15–22.
ACM, 1994.

201

[216] Hazel L Sive, Robert M Grainger, and Richard M Harland. Early Development
of Xenopus Laevis: A Laboratory Manual. CSHL Press, 2000.

[217] EJ Slijper. Biologic Anatomical Investigations on the Bipedal Gait and Upright
Posture in Mammals, With Special Reference to a Little Goat, Born Without
Forelegs. In Proceedings of the Koninklijke Nederlandse Akademie Van Weten-
schappen, volume 45, pages 288–295, 407–415, 1942.

[218] Emilie C Snell-Rood. Selective Processes in Development: Implications for
the Costs and Benefits of Phenotypic Plasticity. Integrative and Comparative
Biology, 52(1), 2012.

[219] Emilie C Snell-Rood. An Overview of the Evolutionary Causes and Conse-
quences of Behavioural Plasticity. Animal Behaviour, 85(5):1004–1011, 2013.

[220] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-
Shot Learning Through Cross-Modal Transfer. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 935–943, 2013.

[221] Kenneth O Stanley. Compositional Pattern Producing Networks: A Novel Ab-
straction of Development. Genetic Programming and Evolvable Machines, 8(2):
131–162, 2007.

[222] Kenneth O Stanley and Risto Miikkulainen. Evolving Neural Networks Through
Augmenting Topologies. Evolutionary Computation, 10(2):99–127, 2002.

[223] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A Hypercube-
Based Encoding for Evolving Large-Scale Neural Networks. Artificial Life, 15
(2):185–212, 2009.

[224] Erik Steltz, Annan Mozeika, Nick Rodenberg, Eric Brown, and Heinrich M
Jaeger. Jsel: Jamming Skin Enabled Locomotion. In The IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 5672–5677,
2009.

[225] Kelly G Sullivan, Maya Emmons-Bell, and Michael Levin. Physiological Inputs
Regulate Species-Specific Anatomy During Embryogenesis and Regeneration.
Communicative & Integrative Biology, 9(4):e1192733, 2016.

[226] Sonia E Sultan. Phenotypic Plasticity for Plant Development, Function and
Life History. Trends in Plant Science, 5(12):537–542, 2000.

[227] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduc-
tion. MIT press, 2018.

202

[228] Reiji Suzuki and Takaya Arita. Interactions Between Learning and Evolution:
The Outstanding Strategy Generated by the Baldwin Effect. Biosystems, 77
(1-3):57–71, 2004.

[229] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Net-
works. arXiv Preprint arXiv:1312.6199, 2013.

[230] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar
Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-To-Real: Learning Ag-
ile Locomotion for Quadruped Robots. In Proceedings of Robotics: Science and
Systems, 2018.

[231] Min D Tang-Schomer, James D White, Lee W Tien, L Ian Schmitt, Thomas M
Valentin, Daniel J Graziano, Amy M Hopkins, Fiorenzo G Omenetto, Philip G
Haydon, and David L Kaplan. Bioengineered Functional Brain-Like Cortical
Tissue. Proceedings of the National Academy of Sciences, 111(38):13811–13816,
2014.

[232] Adrian Thompson. An Evolved Circuit, Intrinsic in Silicon, Entwined With
Physics. In International Conference on Evolvable Systems, pages 390–405.
Springer, 1996.

[233] Sebastian Thrun and Tom M Mitchell. Lifelong Robot Learning. Robotics and
Autonomous Systems, 15(1-2):25–46, 1995.

[234] Niko Tinbergen. On Aims and Methods of Ethology. Zeitschrift für Tierpsy-
chologie, 20(4):410–433, 1963.

[235] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain Randomization for Transferring Deep Neural Networks
From Simulation to the Real World. In The IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017.

[236] Josh Tobin, Lukas Biewald, Rocky Duan, Marcin Andrychowicz, Ankur Handa,
Vikash Kumar, Bob McGrew, Alex Ray, Jonas Schneider, Peter Welinder, et al.
Domain Randomization and Generative Models for Robotic Grasping. In The
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3482–3489, 2018.

[237] Satoshi Toda, Lucas R Blauch, Sindy KY Tang, Leonardo Morsut, and Wen-
dell A Lim. Programming Self-Organizing Multicellular Structures With Syn-
thetic Cell-Cell Signaling. Science, 361(6398):156–162, 2018.

203

[238] Graham Todd, Madhavun Candadai, and Eduardo J Izquierdo. Interaction
Between Evolution and Learning in Nk Fitness Landscapes. In Artificial Life
Conference Proceedings, pages 761–767. MIT Press, 2020.

[239] Laura N Vandenberg, Dany S Adams, and Michael Levin. Normalized Shape
and Location of Perturbed Craniofacial Structures in the Xenopus Tadpole
Reveal an Innate Ability to Achieve Correct Morphology. Developmental Dy-
namics, 241(5):863–878, 2012.

[240] Eric D Vaughan, Ezequiel Di Paolo, and Inman R Harvey. The Evolution of
Control and Adaptation in a 3D Powered Passive Dynamic Walker. In Proceed-
ings of the Ninth International Conference on the Simulation and Synthesis of
Living Systems, Artificial Life IX, pages 139–145. MIT Press, 2004.

[241] Roby Velez and Jeff Clune. Diffusion-Based Neuromodulation Can Elimi-
nate Catastrophic Forgetting in Simple Neural Networks. PloS One, 12(11):
e0187736, 2017.

[242] Jeffrey Ventrella. Explorations in the Emergence of Morphology and Locomo-
tion Behavior in Animated Characters. In Artificial Life IV, pages 436–441,
1994.

[243] Jeffrey Ventrella. Designing Emergence in Animated Artificial Life Worlds. In
Virtual Worlds, pages 143–155. Springer, 1998.

[244] Conrad H Waddington. Canalization of Development and the Inheritance of
Acquired Characters. Nature, 150:563–565, 1942.

[245] Günter P Wagner and Lee Altenberg. Perspective: Complex Adaptations and
the Evolution of Evolvability. Evolution, 50(3):967–976, 1996.

[246] Christoph Waldner, Magdalena Roose, and Gerhart U Ryffel. Red Fluores-
cent Xenopus Laevis: A New Tool for Grafting Analysis. BMC Developmental
Biology, 9(1):1–6, 2009.

[247] Michael Wehner, Ryan L Truby, Daniel J Fitzgerald, Bobak Mosadegh,
George M Whitesides, Jennifer A Lewis, and Robert J Wood. An Integrated
Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature,
536(7617):451–455, 2016.

[248] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing Collective
Behavior in a Termite-Inspired Robot Construction Team. Science, 343(6172):
754–758, 2014.

204

[249] Mary Jane West-Eberhard. Developmental Plasticity and the Origin of Species
Differences. Proceedings of the National Academy of Sciences, 102:6543–6549,
2005.

[250] Edward L. White, Michelle C. Yuen, Jennifer C. Case, and Rebecca K. Kramer.
Low-cost, facile, and scalable manufacturing of capacitive sensors for soft sys-
tems. Advanced Materials Technologies, 2(9):1700072, 2017.

[251] Paul White, Victor Zykov, Josh Bongard, and Hod Lipson. Three Dimensional
Stochastic Reconfiguration of Modular Robots. In Proceedings of Robotics:
Science and Systems, 2005.

[252] Julius Wolff. The Law of Bone Transformation. German Medical Weekly
(Deutsche Medizinische Wochenschrift), 19(47):1222–1224, 1893.

[253] Jianzhong Xi, Jacob J Schmidt, and Carlo D Montemagno. Self-Assembled
Microdevices Driven by Muscle. Nature Materials, 4(2):180–184, 2005.

[254] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolu-
tional Networks. In European Conference on Computer Vision, pages 818–833.
Springer, 2014.

[255] Huichan Zhao, Yan Li, Ahmed Elsamadisi, and Robert Shepherd. Scalable
Manufacturing of High Force Wearable Soft Actuators. Extreme Mechanics
Letters, 3:89–104, 2015.

[256] Barret Zoph and Quoc V Le. Neural Architecture Search With Reinforcement
Learning. arXiv Preprint arXiv:1611.01578, 2016.

[257] Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and Hod Lipson. Self-
Reproducing Machines. Nature, 435(7039):163–164, 2005.

[258] Victor Zykov, Andrew Chan, and Hod Lipson. Molecubes: An Open-Source
Modular Robotics Kit. In IROS Self-Reconfigurable Robotics Workshop, 2007.

205

	Introduction
	The Problem
	Contributions
	Ontology
	Evolved Robots: The Fossil Record
	Evolutionary Algorithms
	The March of Progress
	The Evolvability of Robots
	The Evolution of Development
	Evolved Development in Robots
	Resilient Machines
	A Protean Machine?
	Increasingly Protean Machines
	Overview of the Thesis

	Structure
	Introduction
	Methods
	Results
	Discussion

	Shape
	Introduction
	Methods
	Results
	Conclusion

	Shape and Configuration
	Introduction
	Results
	Discussion
	Methods
	Supplementary Discussion
	Supplementary Methods

	Material, Structure, Configuration
	Introduction
	Methods
	Results
	Discussion

	Structure, Shape, Configuration
	Introduction
	Methods
	Results
	Discussion

	Living Protean Machines
	Introduction
	Results
	Discussion
	Materials and Methods
	Supplementary Methods

	Argument
	Précis of the Thesis
	Sim-to-Real for Structure
	Contribution

	Ballistic Development
	Contribution

	Differential Canalization
	Contribution

	Environment-Mediated Development
	Contribution

	Shapeshifting for Damage Recovery
	Contribution

	Computer-Designed Organisms
	Contribution
	Future Work

	Conclusion

